Roles of Mn in the High-Temperature Air Oxidation of 9Cr Ferritic–Martensitic Steel After Severe Plastic Deformation

2017 ◽  
Vol 89 (3-4) ◽  
pp. 415-428 ◽  
Author(s):  
Shenghu Chen ◽  
Lijian Rong
2019 ◽  
Vol 22 (1) ◽  
pp. 1900448 ◽  
Author(s):  
Vaclav Sklenicka ◽  
Petr Kral ◽  
Jiri Dvorak ◽  
Yoichi Takizawa ◽  
Takahiro Masuda ◽  
...  

2010 ◽  
Vol 58 (19) ◽  
pp. 6411-6420 ◽  
Author(s):  
B. Kockar ◽  
K.C. Atli ◽  
J. Ma ◽  
M. Haouaoui ◽  
I. Karaman ◽  
...  

2021 ◽  
pp. 35-42
Author(s):  
V.N. Voyevodin ◽  
G.D. Tolstolutskaya ◽  
S.A. Karpov ◽  
A.N. Velikodnyi ◽  
M.A. Tikhonovsky ◽  
...  

Effect of thermomechanical treatment on radiation hardening behavior in T91 ferritic-martensitic steel was evaluated. An applying of severe plastic deformation (SPD) by the “upsetting-extrusion” method and subsequent heat treatment led to a considerable grain refinement, crushing of martensite lamellas, reduction of MX carbides size and their more uniform distribution. Nanoindentation measurements of SPD-modified steel revealed a 1.4-fold increase in the hardness relative to the initial steel. Irradiation response of modified steel was examined after 1.4 MeV Ar+ ion irradiations in the dose range of 10…45 displacements per atom (dpa) at room temperature and 460 °C. Microstructure characterization was performed by means of transmission electron microscopy (TEM). It was found that dislocation loops and nano-sized argon bubbles dominated the damage microstructure after ion irradiation. The effects of SPD-induced transformations as well as nano-bubbles formation are discussed regarding to the hardening phenomenon observed in irradiated steel.


2016 ◽  
Vol 256 ◽  
pp. 251-256
Author(s):  
Bohuslav Mašek ◽  
David Aišman ◽  
Filip Vančura ◽  
Martin F.X. Wagner ◽  
Hana Jirková ◽  
...  

This paper describes selected capabilities of unconventional processing of steels in semi-solid state under various process conditions and with the use of various steel chemistries for obtaining unusual structures formed by rapid solidification in combination with other procedures. This investigation involves the use of severe plastic deformation techniques (SPD) and in-situ observation of the transformation of microstructure from solid state to semi-solid state at temperatures above 1200°C using a high-temperature microscope.


2011 ◽  
Vol 1295 ◽  
Author(s):  
David G. Morris ◽  
Maria Antonia Muñoz-Morris

ABSTRACTIron aluminides show many interesting properties, but still show relatively poor ductility at room temperature and only moderate creep resistance at temperatures above about 600ºC. Processes of severe plastic deformation have been investigated for a wide range of ductile alloys over the past decade, but have hardly been considered for intermetallics. This presentation discusses two studies aimed at refining microstructure by the use of severe plastic deformation of iron aluminides. The first considers processing Fe3Al by heavy cold rolling, followed by annealing for recovery or recrystallization, with an objective of refining grain size to improve strength at the same time as ductility. The high strength and poor ductility of the work hardened material leads to a danger of cracking during rolling, which is a problem for manufacturing large quantities of healthy material. Suitable rolling and recovery treatments can, nevertheless, lead to strong materials with some plastic ductility. A different technique of multidirectional, high-strain and high-temperature forging applied to a boride-containing Fe3Al alloy produces a material with large grain size and refined dispersion of boride particles. These particles lead to a considerable increase in creep strength under conditions of moderate stresses at temperatures around 700ºC. This high-strain forging technique can be seen as an intermediate processing method between conventional wrought metallurgy and mechanical-alloying powder metallurgy. This technique offers the possibility to improve high temperature behaviour of such intermetallics containing second-phase dispersions, and can be scaled to produce large quantities of high-quality material.


Sign in / Sign up

Export Citation Format

Share Document