A separation defect of tapetum cells and microspore mother cells results in male sterility in Brassica napus: the role of abscisic acid in early anther development

2009 ◽  
Vol 72 (1-2) ◽  
pp. 111-123 ◽  
Author(s):  
Yun Zhu ◽  
Xiaoling Dun ◽  
Zhengfu Zhou ◽  
Shengqian Xia ◽  
Bin Yi ◽  
...  
1998 ◽  
Vol 17 (1) ◽  
pp. 19-23 ◽  
Author(s):  
J. A. Wilmer ◽  
S. R. Abrams ◽  
J. P. F. G. Helsper ◽  
L. H. W. van der Plas

1991 ◽  
Vol 95 (4) ◽  
pp. 1044-1048 ◽  
Author(s):  
Anne M. Johnson-Flanagan ◽  
Zhong Huiwen ◽  
Mohan R. Thiagarajah ◽  
Hargurdeep S. Saini

2013 ◽  
Vol 49 (No. 1) ◽  
pp. 16-23 ◽  
Author(s):  
Z.D. Xiao ◽  
X.Y. Xin ◽  
H.Y. Chen ◽  
S.W. Hu

The cytological mechanism of male sterility of Shaan-GMS, a natural mutant dominant genic male sterile (DGMS) line in Brassica napus L., is not well studied. Cytological observation was made on different-size buds of DGMS line 0A30A derived from Shaan-GMS line. The pollen mother cells (PMCs) of DGMS line 0A30A were degenerating at the beginning of meiosis and could not pass the anaphase I stage, with no dyads or tetrads formed, suggesting that the DNA damage checkpoint and spindle assembly checkpoint were activated in sterile anthers. During the meiosis process of sterile anthers in the sterile plants, several kinds of abnormal meiotic cells could be observed: nuclei condensed PMCs, cells with micronuclei, collapsed cells, plasmolysis cells, cells connected with nucleoplasmic bridge, and microspore analogue developed from PMCs without meiosis but enclosed by the exine wall. The results suggested Shaan-GMS to be a new type of DGMS line in B. napus.


1985 ◽  
Vol 27 (4) ◽  
pp. 467-471 ◽  
Author(s):  
Z. Fan ◽  
W. Tai ◽  
B. R. Stefansson

Male sterility was investigated in backcross populations from hybrids between Diplotaxis muralis and Brassica napus using the former as the female parent. The F1 was male sterile and low frequencies (less than 20%) of male sterile plants were obtained from subsequent backcross generations. The data did not fit any Mendelian genetic ratios. Cytological examination of pollen mother cells from 52 plants of these backcross populations indicated the presence of an extra chromosome in all 22 male sterile plants and the normal chromosome number (2n = 38) in the remaining 30 fertile plants. Thus an extra chromosome which is derived from Diplotaxis muralis appears to be the sole cause of male sterility in these backcross populations.Key words: male sterility, Brassica napus, Diplotaxis muralis.


2000 ◽  
Author(s):  
David Weiss ◽  
Neil Olszewski

The original objectives of the research were: i. To study the role of GA in anther development, ii. To manipulate GA and/or GA signal transduction levels in the anthers in order to generate male sterility. iii. To characterize the GA signal transduction repressor, SPY. Previous studies have suggested that gibberellins (GAs) are required for normal anther development. In this work, we studied the role of GA in the regulation of anther development in petunia. When plants were treated with the GA-biosynthesis inhibitor paclobutrazol, anther development was arrested. Microscopic analysis of these anthers revealed that paclobutrazol inhibits post-meiotic developmental processes. The treated anthers contained pollen grains but the connective tissue and tapetum cells were degenerated. The expression of the GA-induced gene, GIP, can be used in petunia as a molecular marker to: study GA responses. Analyses of GIP expression during anther development revealed that the gene is induced only after microsporogenesis. This observation further suggests a role for GA in the regulation of post-meiotic processes during petunia anther development. Spy acts as a negative regulator of gibberellin (GA) action in Arabidopsis. We cloned the petunia Spy homologue, PhSPY, and showed that it can complement the spy-3 mutation in Arabidopsis. Overexpression of Spy in transgenic petunia plants affected various GA-regulated processes, including seed germination, shoot elongation, flower initiation, flower development and the expression of a GA- induced gene, GIP. In addition, anther development was inhibited in the transgenic plants following microsporogenesis. The N-terminus of Spy contains tetratricopeptide repeats (TPR). TPR motifs participate in protein-protein interactions, suggesting that Spy is part of a multiprotein complex. To test this hypothesis, we over-expressed the SPY's TPR region without the catalytic domain in transgenic petunia and generated a dominant- negative Spy mutant. The transgenic seeds were able to germinate on paclobutrazol, suggesting an enhanced GA signal. Overexpression of PhSPY in wild type Arabidopsis did not affect plant stature, morphology or flowering time. Consistent with Spy being an O-GlcNAc transferase (OGT), Spy expressed in insect cells was shown to O-GlcNAc modify itself. Consistent with O-GlcNAc modification playing a role in GA signaling, spy mutants had a reduction in the GlcNAc modification of several proteins. After treatment of the GA deficient, gal mutant, with GA3 the GlcNAc modification of proteins of the same size as those affected in spy mutants exhibited a reduction in GlcNAcylation. GA-induced GlcNAcase may be responsible for this de-GlcNAcylation because, treatment of gal with GA rapidly induced an increase in GlcNAcase activity. Several Arabidopsis proteins that interact with the TPR domain of Spy were identified using yeast two-hybrids screens. One of these proteins was GIGANTEA (GI). Consistent with GI and Spy functioning as a complex in the plant the spy-4 was epistatic to gi. These experiments also demonstrated that, in addition to its role in GA signaling, Spy functions in the light signaling pathways controlling hypocotyl elongation and photoperiodic induction of flowering. A second Arabidopsis OGT, SECRET AGENT (SCA), was discovered. Like SPY, SCA O-GlcNAc modifies itself. Although sca mutants do not exhibit dramatic phenotypes, spy/sca double mutants exhibit male and female gamete and embryo lethality, indicating that Spy and SCA have overlapping functions. These results suggest that O-GlcNAc modification is an essential modification in plants that has a role in multiple signaling pathways.


Author(s):  
Junping Yu ◽  
Guolong Zhao ◽  
Wei Li ◽  
Ying Zhang ◽  
Peng Wang ◽  
...  

Abstract Key message Identification and functional analysis of the male sterile gene MS6 in Glycine max. Abstract Soybean (Glycine max (L.) Merr.) is an important crop providing vegetable oil and protein. The male sterility-based hybrid breeding is a promising method for improving soybean yield to meet the globally growing demand. In this research, we identified a soybean genic male sterile locus, MS6, by combining the bulked segregant analysis sequencing method and the map-based cloning technology. MS6, highly expressed in anther, encodes an R2R3 MYB transcription factor (GmTDF1-1) that is homologous to Tapetal Development and Function 1, a key factor for anther development in Arabidopsis and rice. In male sterile ms6 (Ames1), the mutant allele contains a missense mutation, leading to the 76th leucine substituted by histidine in the DNA binding domain of GmTDF1-1. The expression of soybean MS6 under the control of the AtTDF1 promoter could rescue the male sterility of attdf1 but ms6 could not. Additionally, ms6 overexpression in wild-type Arabidopsis did not affect anther development. These results evidence that GmTDF1-1 is a functional TDF1 homolog and L76H disrupts its function. Notably, GmTDF1-1 shows 92% sequence identity with another soybean protein termed as GmTDF1-2, whose active expression also restored the fertility of attdf1. However, GmTDF1-2 is constitutively expressed at a very low level in soybean, and therefore, not able to compensate for the MS6 deficiency. Analysis of the TDF1-involved anther development regulatory pathway showed that expressions of the genes downstream of TDF1 are significantly suppressed in ms6, unveiling that GmTDF1-1 is a core transcription factor regulating soybean anther development.


2021 ◽  
Vol 22 (12) ◽  
pp. 6557
Author(s):  
Li-Ying Ren ◽  
Heng Zhao ◽  
Xiao-Ling Liu ◽  
Tong-Kai Zong ◽  
Min Qiao ◽  
...  

Gastrodia elata is a well-known medicinal and heterotrophic orchid. Its germination, limited by the impermeability of seed coat lignin and inhibition by abscisic acid (ABA), is triggered by symbiosis with fungi such as Mycena spp. However, the molecular mechanisms of lignin degradation by Mycena and ABA biosynthesis and signaling in G. elata remain unclear. In order to gain insights into these two processes, this study analyzed the transcriptomes of these organisms during their dynamic symbiosis. Among the 25 lignin-modifying enzyme genes in Mycena, two ligninolytic class II peroxidases and two laccases were significantly upregulated, most likely enabling Mycena hyphae to break through the lignin seed coats of G. elata. Genes related to reduced virulence and loss of pathogenicity in Mycena accounted for more than half of annotated genes, presumably contributing to symbiosis. After coculture, upregulated genes outnumbered downregulated genes in G. elata seeds, suggesting slightly increased biological activity, while Mycena hyphae had fewer upregulated than downregulated genes, indicating decreased biological activity. ABA biosynthesis in G. elata was reduced by the downregulated expression of 9-cis-epoxycarotenoid dioxygenase (NCED-2), and ABA signaling was blocked by the downregulated expression of a receptor protein (PYL12-like). This is the first report to describe the role of NCED-2 and PYL12-like in breaking G. elata seed dormancy by reducing the synthesis and blocking the signaling of the germination inhibitor ABA. This study provides a theoretical basis for screening germination fungi to identify effective symbionts and for reducing ABA inhibition of G. elata seed germination.


Sign in / Sign up

Export Citation Format

Share Document