QTLs for nutritional contents of rice seedlings (Oryza sativa L.) in solution cultures and its implication to tolerance to iron-toxicity

2005 ◽  
Vol 275 (1-2) ◽  
pp. 57-66 ◽  
Author(s):  
Akifumi Shimizu ◽  
Corinta Q. Guerta ◽  
Glenn B. Gregorio ◽  
Shinji Kawasaki ◽  
Hiroshi Ikehashi
2020 ◽  
Vol 7 (3) ◽  
Author(s):  
Debarati Das ◽  
Paulin Seal ◽  
Sabarni Biswas ◽  
Asok K Biswas

The trace element Selenium (Se) has a dual role in the growth and metabolism of plants. Low concentration of selenium (2 ?M selenate) promotes growth and counteracts the detrimental effects of abiotic stress as opposed to higher levels (?10 ?M) where it acts as a pro-oxidant. We focused on both individual and interactive influence of selenate and sulphate on thiol metabolism in seedlings of rice cultivars, satabdi and khitish. Inhibition of ascorbate contents by about 17% on an average, in the test seedlings treated with Se correlated with increased activities of ascorbate peroxidase and ascorbate oxidase in the cultivars. The glutathione levels also increased significantly, on an average by about 102% in roots and 74% in shoots of cv. satabdi compared to a rise, by about 49% in roots and 56% in shoots of cv. khitish. The elevated level of glutathione coincided with the stimulatory influence of Se on its regulatory enzymes. Concomitantly the levels of ?-tocopherol and phytochelatins were also induced in both the test cultivars. Increase in ?-tocopherol activity reached a maximum by about 47% in roots and 80% in shoots of cv. satabdi whereas it increased by about 36% in roots and about 64% in shoots of cv. khitish. Substantive increase in the levels of PC4 followed by PC2 and PC3 was also noted. The effects were found to be less conspicuous in shoots than in roots. Rice seedlings exposed to combined Se and 10mM sulphate treatments showed improved growth and development as a result of better thiol metabolism due to amelioration of the adverse effects caused by selenium alone on all the parameters tested.


Chemosphere ◽  
2005 ◽  
Vol 60 (6) ◽  
pp. 802-809 ◽  
Author(s):  
Yu-Hong Su ◽  
Yong-Guan Zhu ◽  
Ai-Jun Lin ◽  
Xu-Hong Zhang

1978 ◽  
Vol 61 (5) ◽  
pp. 851-854 ◽  
Author(s):  
H. C. Bittenbender ◽  
David R. Dilley ◽  
Violet Wert ◽  
Stanley K. Ries

1989 ◽  
Vol 44 (9-10) ◽  
pp. 757-764 ◽  
Author(s):  
Rudolf Schendel ◽  
Zhe Tong ◽  
Wolfhart Rüdiger

Phytochrome was isolated from etiolated rice seedlings (Oryza sativa L.) by slight modification of the procedure for oat phytochrome. Spectral data of rice phytochrome are comparable with those of oat and rye phytochrome. Controlled proteolysis with endoproteinases Lys-C and Glu-C yielded defined fragments some of which were different for Pr and Pfr. The fragments were identified by comparison with the corresponding fragments of oat phytochrome and by comparison of the amino acid sequences of rice and oat phytochrome. Regions of the peptide chain which are differently exposed in Pr and Pfr were identified. A highly conserved sequence around residues 740-750 is discussed as candidate for an ‘‘active center’’ of signal transduction.


2018 ◽  
Vol 148 ◽  
pp. 869-875 ◽  
Author(s):  
Aboubacar Younoussa CAMARA ◽  
Yanan Wan ◽  
Yao Yu ◽  
Qi Wang ◽  
Huafen Li

1997 ◽  
Vol 61 (5) ◽  
pp. 864-869 ◽  
Author(s):  
Koji Furukawa ◽  
Young-Yell Yang ◽  
Ichiro Honda ◽  
Tadashi Yanagisawa ◽  
Akira Sakurai ◽  
...  

2007 ◽  
Vol 87 (1) ◽  
pp. 49-57 ◽  
Author(s):  
J. Chen ◽  
C. Zhu ◽  
D. Lin ◽  
Z. -X Sun

Cadmium-sensitive rice (Oryza sativa L. subsp. Japonica ‘Zhonghua11’) mutants were obtained using an Agrobacterium tumefaciens-based gene delivery system. Significant phenotypic differences were observed between a Cd-sensitive mutant (ST) and wild type (WT) rice seedlings. Results indicated that Cd accumulation in the leaves of the mutant was twice that of the wild type after 10 d of 0.5 mM Cd2+ treatment. Furthermore, a rapid Cd-induced H2O2 increase was observed in the mutant leaves, which induced abnormally early activity in antioxidant enzymes such as superoxide dismutase (SOD). However, the mutant leaves showed lower catalase (CAT) activity. By contrast, guaiacol peroxidase (G-POD) activities were higher in the mutant than in the wild type roots. Together with the Cd toxicity-induced decline of early responsive enzymatic activities in vivo, especially CAT, the inability of mutants to scavenge accumulated H2O2 resulted in higher lipid peroxide levels. H2O2 might also strengthen the expression of G-POD as a signaling molecule. Results suggest that G-POD activity can be a potential biomarker reflecting Cd sensitivity in rice seedlings. Key words: Antioxidant enzyme, Cd toxicity, Cd-sensitive mutant, lipid peroxidation, rice (Oryza sativa L.)


Sign in / Sign up

Export Citation Format

Share Document