Biomass, morphology and nutrient contents of fine roots in four Norway spruce stands

2007 ◽  
Vol 292 (1-2) ◽  
pp. 79-93 ◽  
Author(s):  
Werner Borken ◽  
Guido Kossmann ◽  
Egbert Matzner
2021 ◽  
Author(s):  
Tatjana Carina Speckert ◽  
Guido Lars Bruno Wiesenberg

<p>Following the Kyoto Protocol, afforestation has been acknowledged as a promising strategy for soil organic matter (SOM) conservation and to mitigate anthropogenic CO<sub>2</sub> emissions (Huang et al., 2011). However, the effect of carbon sequestration in soils depends on ecosystem properties, the former land use and on type of trees planted. Some studies showed a decline in SOM (Hiltbrunner et al., 2013) while others reported an increase in SOM 30 to 40 years after afforestation of former pastures (Thuille and Schulze, 2006). Thus, there is a need for well-designed and site-specific long-term experiments on a decadal scale to investigate changes in SOM dynamics following afforestation to predict the behaviour of carbon sequestration under changing environmental conditions. One approach to trace the sources of SOM is the application of molecular proxies like <em>n</em>-alkanes or fatty acids. Though, focusing only on one compound class may lead to flawed conclusions due to missing information offered by other compound classes. One way to obtain a more solid conclusion on the SOM dynamic in soils is the combination of multiple compound classes (Li et al., 2018). The aim of this project is to identify possible sources of OM in soils in a subalpine afforestation sequence (40-130 years) with Norway spruce (Picea abies L.) on a former pasture in Jaun, Switzerland, by combining molecular proxies from several compound classes originating from various plant and microbial sources.</p><p>A higher (+70%) number of fine roots (<2mm) was observed under pasture soils compared to spruce soils of all forest stand ages. The lower root frequency and the changes in litter composition under spruce compared to pasture result in a decline in SOM quality. Hiltbrunner et al. (2013) observed a change in SOM quality following afforestation of former pasture as fine roots of grass have a lower lignin concentration (240 mg g<sup>-1</sup>) compared to fine roots of spruce (310 mg g<sup>-1</sup>). In our project we expect a decline in the SOC stocks, specifically in the younger (40 to 55yr) forest stands and a change in SOM quality following afforestation.</p><p><strong>References</strong></p><p>Hiltbrunner, D., Zimmermann, S., and Hagedorn, F. (2013). Afforestation with Norway spruce on a subalpine pasture alters carbon dynamics but only moderately affects soil carbon storage. Biogeochemistry, 115, 251-266.</p><p>Huang, Z., Davis, M. R., Condron, L. M., and Clinton, P. W. (2011). Soil carbon pools, plant biomarkers and mean carbon residence time after afforestation of grassland with three tree species. Soil Biology and Biochemistry, 43, 1341-1349.</p><p>Li, X., Anderson, B. J., Vogeler, I., and Schwendenmann, L. (2018). Long-chain n-alkane and n-fatty acid characteristics in plants and soil-potential to separate plant growth forms, primary and secondary grasslands? Science of the Total Environment, 645, 1567-1578.</p><p>Thuille, A., and Schulze, E. D. (2006). Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Global Change Biology, 12, 325-342</p>


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 841
Author(s):  
Iveta Desaine ◽  
Annija Kārkliņa ◽  
Roberts Matisons ◽  
Anna Pastare ◽  
Andis Adamovičs ◽  
...  

The increased removal of forest-derived biomass with whole-tree harvesting (WTH) has raised concerns about the long-term productivity and sustainability of forest ecosystems. If true, this effect needs to be factored in the assessment of long-term feasibility to implement such a drastic forest management measure. Therefore, the economic performance of five experimental plantations in three different forest types, where in 1971 simulated WTH event occurred, was compared with pure, planted and conventionally managed (CH) Norway spruce stands of similar age and growing conditions. Potential incomes of CH and WTH stands were based on timber prices for period 2014–2020. However, regarding the economics of root and stump biomass utilization, they were not included in the estimates. In any given price level, the difference of internal rate of return between the forest types and selected managements were from 2.5% to 6.2%. Therefore, Norway spruce stands demonstrate good potential of independence regardless of stump removal at the previous rotation.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 163
Author(s):  
Jan Světlík ◽  
Jan Krejza ◽  
Pavel Bednář

Tree growth depends on many factors such as microsite conditions, vitality, and variations in climate and genetics. It is generally accepted that higher growth indicates both an economic benefit and better vitality of any tree. Here we use a modified approach of evaluating tree social area to study mutual tree competition based on the orientation and shape of trees social area. The investigation was performed in nine Norway spruce stands in the Czech Republic. The objective of this study performed from 2008 to 2012 was to quantify relative tree radial increments with respect to the lowest and highest competition found in specific sectors of tree social area (AS). Specific groups of trees (tree classes) were evaluated according to their classes (dominant, co-dominant and sub-dominant) and their composition status in ninety-degree sectors of AS using established classifying rules. The results showed that a spatially-available area (AA) is an inappropriate parameter for predicting tree growth, whereas AS provided robust explanatory power to predict relative radial growth. Tree size was observed as an important indicator of relative radial increments. A significantly positive correlation was found for a radial increment of sub-dominant trees with the lowest competition from western directions; whereas a negative correlation was observed when the lowest competition was observed from eastern directions. For dominant trees, there was an evident growth reaction only when more than 50% of the AS was oriented towards one of the cardinal points. Individual differences in the orientation of tree AS may be important parameters with regard to competition and its spatial variability within an area surrounding a particular tree and deserve more detailed attention in tree growth models and practice.


2010 ◽  
Vol 42 (2) ◽  
pp. 178-185 ◽  
Author(s):  
Karna Hansson ◽  
Dan Berggren Kleja ◽  
Karsten Kalbitz ◽  
Hanna Larsson

Sign in / Sign up

Export Citation Format

Share Document