Anaerobic Soil Disinfestation (ASD) Combined with Soil Solarization as a Methyl Bromide Alternative: Vegetable Crop Performance and Soil Nutrient Dynamics

2014 ◽  
Vol 378 (1-2) ◽  
pp. 365-381 ◽  
Author(s):  
David M. Butler ◽  
Nancy Kokalis-Burelle ◽  
Joseph P. Albano ◽  
T. Greg McCollum ◽  
Joji Muramoto ◽  
...  
2018 ◽  
Vol 35 (3) ◽  
pp. 274-285 ◽  
Author(s):  
Bodh R. Paudel ◽  
Francesco Di Gioia ◽  
Xin Zhao ◽  
Monica Ozores-Hampton ◽  
Jason C. Hong ◽  
...  

AbstractIn the search for alternative practices to chemical soil fumigation (CSF), anaerobic soil disinfestation (ASD) has proven to be a promising tool for soil-borne pest management and crop production improvement. The ASD treatment with composted poultry litter (CPL) and molasses (M, a labile carbon source) was identified as an effective approach for a biologically based soil disinfestation system in tomato (Solanum lycopersicum L.) production in Florida. However, environmental and food-safety concerns are associated with animal manure-based amendments, which led to the exploration of composted yard waste (CYW) as a potential substitute for CPL in ASD application. In this study, field trials were conducted in Citra and Immokalee, FL to examine the effects of ASD using CYW, CPL and M compared with a commercially available microbial amendment system on root-knot nematodes, weeds, fruit yield and quality of fresh-market tomato. Treatments included (1) ASD with CPL (11 Mg ha−1) and M (6.9 m3 ha−1) (ASD0.5), (2) ASD with CYW (26.9 Mg ha−1) and M (CYW1 + M), (3) ASD with CYW (13.5 Mg ha−1) and M (CYW0.5 + M), (4) Soil Symphony Amendment (SSA), (5) CYW (26.9 Mg ha−1) alone (CYW1) and (6) a combination of CYW1 + SSA, in comparison with (7) untreated control and (8) CSF (Pic-Clor 60 at 224 kg ha−1). Cumulative soil anaerobiosis was greater in ASD0.5 compared with all the other treatments. The root-knot nematode gall index ratings on the tomato crop were significantly lower in CSF, ASD0.5, CYW1 + M and CYW0.5 + M than untreated control in Citra. Although CYW1 and SSA alone had a moderately suppressive effect on weed coverage and root-knot nematodes, their positive impact on crop performance was limited when used alone. ASD0.5, CYW1 + M and CSF had significantly higher marketable and total fruit yields than untreated control in both locations, while all treatments showed promising results in the Immokalee trial in comparison with untreated control. In general, few differences in major fruit quality attributes were found. Although using CYW in ASD was not as effective as CPL in creating soil anaerobic conditions, the enhanced crop performance in CYW1 + M and CYW0.5 + M suggests the potential of using CYW as an alternative source of organic amendment in combination with M to achieve benefits similar to those obtained with CPL-based ASD.


2021 ◽  
Vol 5 ◽  
Author(s):  
Utsala Shrestha ◽  
Keagan J. Swilling ◽  
David M. Butler

Efficacy of anaerobic soil disinfestation (ASD) for soilborne plant pathogen suppression is strongly influenced by soil environment and organic amendment attributes. At the same time, these factors influence soil nutrient availability, crop nutrition, and crop performance, but published information on ASD amendment property effects, including carbon to nitrogen (C:N) ratio and C substrate bioavailability, on crop performance and soil nutrient availability is limited. We evaluated ASD amendment effects on soil N availability, crop N status, and solanaceous crop performance in a series of trials: (1) greenhouse/growth chamber study of amendments (primarily molasses/soybean hulls and wheat bran) formulated at 10:1, 20:1, 30:1 and 40:1 C:N ratios (4 mg C g−1 soil), (2) field study with molasses/soybean hull-based amendments at equivalent C:N ratios/C rates (3) on-farm study with molasses/soybean hull-based amendments (4 mg C g−1 soil) compared to grower-standard control, and (4) field study of labile to recalcitrant amendment substrates at 30:1 C:N ratio (~3.4 mg C g−1 soil). ASD amendment C:N ratio strongly influenced soil inorganic N and the lowest (10:1) ratio was associated with highest soil inorganic N at ASD treatment termination in both trials 1 and 2, which often persisted into the cropping phase. Accordingly, the lowest amendment C:N ratio was also associated with the highest biomass (trail 1), leaf tissue N (trial 2), and crop yield (trials 1, 2) among treatments, even with application of recommended fertigation rates to all treatments in the field study. In trial 3, ASD treatment induced higher soil inorganic N and crop yield than the control, but no differences were observed in plant tissue N. In trial 4, more decomposable ASD substrates reduced soil inorganic N at ASD treatment termination, with the highest soil inorganic N associated with the most recalcitrant amendment, but there was no effect on crop yield. ASD amendment C:N ratio, and to a lesser extent, amendment decomposability, exert a strong influence soil inorganic N and crop performance. Optimization of ASD treatments for disease management will require simultaneous optimization of crop nutrition practices to facilitate more holistic, less confounded assessment of crop performance and to facilitate recommendations for grower adoption.


2021 ◽  
Vol 9 (8) ◽  
pp. 1638
Author(s):  
Shashika S. Hewavitharana ◽  
Emmi Klarer ◽  
Joji Muramoto ◽  
Carol Shennan ◽  
Mark Mazzola

Charcoal rot and Fusarium wilt, caused by Macrophomina phaseolina and Fusarium oxysporum f. sp. fragariae, respectively, are major soil-borne diseases of strawberry that have caused significant crop losses in California. Anaerobic soil disinfestation has been studied as an industry-level option to replace soil fumigants to manage these serious diseases. Studies were conducted to discern whether Gramineae carbon input type, incubation temperature, or incubation duration influences the efficacy of this disease control tactic. In experiments conducted using ‘low rate’ amendment applications at moderate day/night temperatures (24/18 °C), and carbon inputs (orchard grass, wheat, and rice bran) induced an initial proliferation and subsequent decline in soil density of the Fusarium wilt pathogen. This trend coincided with the onset of anaerobic conditions and a corresponding generation of various anti-fungal compounds, including volatile organic acids, hydrocarbons, and sulfur compounds. Generation of these metabolites was associated with increases in populations of Clostridium spp. Overall, carbon input and incubation temperature, but not incubation duration, significantly influenced disease suppression. All Gramineae carbon inputs altered the soil microbiome and metabolome in a similar fashion, though the timing and maximum yield of specific metabolites varied with input type. Fusarium wilt and charcoal rot suppression were superior when anaerobic soil disinfestation was conducted using standard amendment rates of 20 t ha−1 at elevated temperatures combined with a 3-week incubation period. Findings indicate that anaerobic soil disinfestation can be further optimized by modulating carbon source and incubation temperature, allowing the maximum generation of antifungal toxic volatile compounds. Outcomes also indicate that carbon input and environmental variables may influence treatment efficacy in a target pathogen-dependent manner which will require pathogen-specific optimization of treatment protocols.


2017 ◽  
Vol 218 ◽  
pp. 105-116 ◽  
Author(s):  
Haichao Guo ◽  
Francesco Di Gioia ◽  
Xin Zhao ◽  
Monica Ozores-Hampton ◽  
Marilyn E. Swisher ◽  
...  

2004 ◽  
Vol 96 (2) ◽  
pp. 525-530 ◽  
Author(s):  
K. R. Sistani ◽  
G. E. Brink ◽  
A. Adeli ◽  
H. Tewolde ◽  
D. E. Rowe

2007 ◽  
Vol 29 (3) ◽  
pp. 115-134 ◽  
Author(s):  
Gilbert C. Sigua ◽  
Mary J. Williams ◽  
Samuel W. Coleman

Author(s):  
Yunuen Tapia-Torres ◽  
Pamela Chávez Ortiz ◽  
Natali Hernández-Becerra ◽  
Alberto Morón Cruz ◽  
Ofelia Beltrán ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document