The Processing and Regulation of Intronic miRNAs Are Independent of Their Host Genes in Arabidopsis

Author(s):  
Ying Li ◽  
Qianhuan Guo ◽  
Meng Wang ◽  
Chengchao Zheng ◽  
Kang Yan
Keyword(s):  
RNA ◽  
2018 ◽  
Vol 24 (8) ◽  
pp. 991-1004 ◽  
Author(s):  
Avital Steiman-Shimony ◽  
Orr Shtrikman ◽  
Hanah Margalit

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2232-2232
Author(s):  
Serban San-Marina ◽  
Fernando Suarez Saiz ◽  
Haytham Khoury ◽  
Mark D. Minden

Abstract In leukemia, the integrity of the transcriptome is altered by chromosomal translocations, deletions, duplications, as well as by epigenetic changes in chromatin structure. By targeting mRNAs for translational repression or RNase-dependent hydrolysis (AU-rich miRNAs or shRNA-like effects), the micro RNA (miRNA) component of the transcriptome is estimated to regulate expression of up to 30% of all proteins. Yet the causes and role of deregulated miRNA expression in malignancy are largely unknown, in part because promoter events are not characterized. Since more than one-third of all known mammalian miRNA genes are encoded in the introns of protein-coding genes they may be regulated by the same promoter events that regulate host-gene mRNA expression. To provide experimental validation for coordinated expression of miRNAs and their host genes we compared Affymetrix U133A gene expression data for the promyelocytic NB4 and acute myelogenous leukemia AML2 cell lines with the expression of miRNA precursors. We found similar patterns of host gene expression in the two cell lines and a good correlation with the expression of miRNA precursors in NB4 cells (r=0.464, N=30 miRNAs, p<0.016). To further demonstrate that host gene mRNAs and miRNAs are expressed from common transcripts, we activated promoter events by enforcing the expression of Lyl1 a basic helix-loop-helix transcription factor that is often over-expressed in AML. This resulted in a greater than 2-fold increase in hsa-mir-126-1, 032-2, 107-1, 026a, -023b, -103-2, and 009-3-1 intronic miRNA precursors and a corresponding increase in host gene expression. Meta-analysis of microarray data across many experiments and platforms (available through Oncomine.org) has been used to study the cancer transcriptome. To help determine if intronic miRNAs play a substantial role in malignancy, we correlated host gene expression data with the expression of predicted miRNA targets. Less than 20% of all differentially expressed genes in leukemia and lymphoma were predicted targets, compared to 68% in breast cancer. Since the Gene Ontology term “ion binding” is most commonly associated with miRNA host genes, the data suggest that this cancer module is relatively inactive in leukemia and lymphoma, compared to breast cancer. Gene cluster analysis of a leukemia data set using only miRNA host gene expression was able to classify patients into similar (but not identical) subsets as did an analysis based on over 20,000 transcripts. To further demonstrate that miRNAs and their host genes are expressed from the same transcription unit, we correlated the expression of miRNA targets with that of genes that are either hosts for miRNAs or are situated several kilobases downstream of a miRNA, and thus belong to different transcription units. We applied this analysis to a subset of 81 AML patients that presented a normal karyotype and found significant negative correlations (p<0.01) between the levels of host genes for hsa-mir-15b, -103-1, and -128 and the expression ranks of their predicted gene targets, but no statistically significant correlation between non-host genes and targets for up-stream miRNAs. These data demonstrate co-regulated expression of host genes and intronic miRNAs and the usefulness of intronic miRNAs in cancer profiling.


2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Abul Bashar Mir Md. Khademul Islam ◽  
Eusra Mohammad ◽  
Md. Abdullah-Al-Kamran Khan

Abstract Background MicroRNAs are ~ 22-nucleotide-long biological modifiers that act as the post-transcriptional modulator of gene expression. Some of them are identified to be embedded within the introns of protein-coding genes, these miRNAs are called the intronic miRNAs. Previous findings state that these intronic miRNAs are co-expressed with their host genes. This co-expression is necessary to maintain the robustness of the biological system. Till to date, only a few experiments are performed discretely to elucidate the functional relationship between few co-expressed intronic miRNAs and their associated host genes. Results In this study, we have interpreted the underlying modulatory mechanisms of intronic miRNA hsa-miR-933 on its target host gene ATF2 and found that aberration can lead to several disease conditions. A protein-protein interaction network-based approach was adopted, and functional enrichment analysis was performed to elucidate the significantly over-represented biological functions and pathways of the common targets. Our approach delineated that hsa-miR-933 might control the hyperglycemic condition and hyperinsulinism by regulating ATF2 target genes MAP4K4, PRKCE, PEA15, BDNF, PRKACB, and GNAS which can otherwise lead to the development of type II diabetes mellitus. Moreover, we showed that hsa-miR-933 can regulate a target of ATF2, brain-derived neurotrophic factor (BDNF), to modulate the optimal expression of ATF2 in neuron cells to render neuroprotection for the inhibition of neurodegenerative diseases. Conclusions Our in silico model provides interesting resources for experimentations in a model organism or cell line for further validation. These findings may extend the common perception of gene expression analysis with new regulatory functionality.


2009 ◽  
Vol 9 (1) ◽  
pp. 21 ◽  
Author(s):  
Kavleen Sikand ◽  
Stephen D Slane ◽  
Girish C Shukla

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Annikka Polster ◽  
Lena Öhman ◽  
Julien Tap ◽  
Muriel Derrien ◽  
Boris Le Nevé ◽  
...  

AbstractAlthough incompletely understood, microbiota-host interactions are assumed to be altered in irritable bowel syndrome (IBS). We, therefore, aimed to develop a novel analysis pipeline tailored for the integrative analysis of microbiota-host interactions and association to symptoms and prove its utility in a pilot cohort. A multilayer stepwise integrative analysis pipeline was developed to visualize complex variable associations. Application of the pipeline was demonstrated on a dataset of IBS patients and healthy controls (HC), using the R software package to analyze colonic host mRNA and mucosal microbiota (16S rRNA gene sequencing), as well as gastrointestinal (GI) and psychological symptoms. In total, 42 IBS patients (57% female, mean age 33.6 (range 18–58)) and 20 HC (60% female, mean age 26.8 (range 23–41)) were included. Only in IBS patients, mRNA expression of Toll-like receptor 4 and genes associated with barrier function (PAR2, OCLN, TJP1) intercorrelated closely, suggesting potential functional relationships. This host genes-based “permeability cluster” was associated to mucosa-adjacent Chlamydiae and Lentisphaerae, and furthermore associated to satiety as well as to anxiety, depression and fatigue. In both IBS patients and HC, chromogranins, secretogranins and TLRs clustered together. In IBS patients, this host genes-based “immune-enteroendocrine cluster” was associated to specific members of Firmicutes, and to depression and fatigue, whereas in HC no significant association to microbiota was identified. We have developed a stepwise integrative analysis pipeline that allowed identification of unique host-microbiota intercorrelation patterns and association to symptoms in IBS patients. This analysis pipeline may aid in advancing the understanding of complex variable associations in health and disease.


IUBMB Life ◽  
2021 ◽  
Author(s):  
Alessio Biagioni ◽  
Shima Tavakol ◽  
Nooshin Ahmadirad ◽  
Masoumeh Zahmatkeshan ◽  
Lucia Magnelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document