scholarly journals Subfield crop yields and temporal stability in thousands of US Midwest fields

Author(s):  
Bernardo Maestrini ◽  
Bruno Basso

AbstractUnderstanding subfield crop yields and temporal stability is critical to better manage crops. Several algorithms have proposed to study within-field temporal variability but they were mostly limited to few fields. In this study, a large dataset composed of 5520 yield maps from 768 fields provided by farmers was used to investigate the influence of subfield yield distribution skewness on temporal variability. The data are used to test two intuitive algorithms for mapping stability: one based on standard deviation and the second based on pixel ranking and percentiles. The analysis of yield monitor data indicates that yield distribution is asymmetric, and it tends to be negatively skewed (p < 0.05) for all of the four crops analyzed, meaning that low yielding areas are lower in frequency but cover a larger range of low values. The mean yield difference between the pixels classified as high-and-stable and the pixels classified as low-and-stable was 1.04 Mg ha−1 for maize, 0.39 Mg ha−1 for cotton, 0.34 Mg ha−1 for soybean, and 0.59 Mg ha−1 for wheat. The yield of the unstable zones was similar to the pixels classified as low-and-stable by the standard deviation algorithm, whereas the two-way outlier algorithm did not exhibit this bias. Furthermore, the increase in the number years of yield maps available induced a modest but significant increase in the certainty of stability classifications, and the proportion of unstable pixels increased with the precipitation heterogeneity between the years comprising the yield maps.

2005 ◽  
Vol 85 (3) ◽  
pp. 439-451 ◽  
Author(s):  
John D Lauzon ◽  
David J Fallow ◽  
Ivan P O’Halloran ◽  
Sharon D. L. Gregory ◽  
A. Peter von Bertoldi

Using previous years’ yield patterns may be one method of breaking a field into management zones for the purpose of site-specific management. For this method to be useful there must be temporal stability of yield patterns and there must be a sound method of assessing the spatial-temporal stability of yield in a field. To this end, a method was developed to give a non-biased estimate of the within-field spatial-temporal stability of yield. The method determined the probability that the normalized yield for all years available at a given location in the field fit within the accuracy limits of the combine. Combine accuracies of ± 2.5%, 5% and 10% of the field mean yield and gridded data of 3 m, 6 m, and 9 m cell sizes, as well as crop choice were all included in the model to assess its sensitivity to changes in these factors. The resulting spatial-temporal stability maps were well correlated with visual estimations of the spatial yield patterns. The model results were highly influenced by the inputted combine accuracy, but grid size and crop choice had little affect on the proportion of the field or the spatial pattern of temporal stability in the two field sites examined. The sensitivity of the model to changes in the input value for the combine accuracy indicated that a good estimate of this value is required for the determination of the stable patterns in a field. Key words: Spatial-temporal stability, yield


2012 ◽  
Vol 9 (1) ◽  
pp. 819-845 ◽  
Author(s):  
H. Mittelbach ◽  
S. I. Seneviratne

Abstract. Knowledge about the spatio-temporal variability of soil moisture is essential to understand and predict processes in climate science and hydrology. A significant body of literature exists on the characterization of the spatial variability and the ranks stability (also called temporal stability) of absolute soil moisture. Yet previous studies were generally based on short-term measurement campaigns and did not distinguish the respective contributions of time varying and time invariant components to these quantities. In this study, we investigate this issue using measurements from 14 grassland sites of the SwissSMEX soil moisture network (spatial extent of approx. 150 × 210 km) over the time period May 2010 to July 2011. We thereby decompose the spatial variance of absolute soil moisture over time in contributions from the spatial variance of the mean soil moisture at all sites (which is time invariant), and components that vary over time and are related to soil moisture dynamics. These include the spatial variance of the temporal soil moisture anomalies at all sites and the covariance between the sites' anomalies to the spatial mean at a given time step and those for the temporal mean values. The analysis demonstrates that the time invariant term contributes 50–160% (on average 94%) of the spatial soil moisture variance at any point in time, while the covariance term generally contributes negatively to the spatial variance. On the other hand the spatial variance of the temporal anomalies, which is overall most relevant for climate and hydrological applications because it is directly related to soil moisture dynamics, is relatively limited and constitutes at most 2–30% (on average 9%) of the total variance. Nonetheless, this term is not negligible compared to the temporal anomalies of the spatial mean. These results suggest that a large fraction of the spatial variability of soil moisture assessed from short-term campaign is time invariant. Moreover, we find that the rank (or "temporal") stability concept when applied to absolute soil moisture, mostly characterizes the time-invariant patterns. Indeed, sites that best represent the mean soil moisture dynamics of the network are not the same as those that best reflect mean soil moisture at any point in time. Overall this study shows that conclusions derived from the analysis of the spatio-temporal variability of absolute soil moisture do generally not apply to temporal soil moisture anomalies, and hence to soil moisture dynamics.


2012 ◽  
Vol 16 (7) ◽  
pp. 2169-2179 ◽  
Author(s):  
H. Mittelbach ◽  
S. I. Seneviratne

Abstract. Knowledge about the spatio-temporal variability of soil moisture is essential to understand and predict processes in climate science and hydrology. A significant body of literature exists on the characterization of the spatial variability and the rank stability (also called temporal stability) of absolute soil moisture. Yet previous studies were generally based on short-term measurement campaigns and did not distinguish the respective contributions of time-varying and time-invariant components to these quantities. In this study, we investigate this issue using measurements from 14 grassland sites of the SwissSMEX soil moisture network (spatial extent of approx. 150 × 210 km) over the time period May 2010 to July 2011. We thereby decompose the spatial variance of absolute soil moisture over time in contributions from the spatial variance of the mean soil moisture at all sites (which is time-invariant), and components that vary over time and are related to soil moisture dynamics. These include the spatial variance of the temporal soil moisture anomalies at all sites and the covariance between the site anomalies to the spatial mean at a given time step and those for the temporal mean values. The analysis demonstrates that the time-invariant term contributes 50–160% (on average 94%) of the spatial soil moisture variance at any point in time, while the covariance term generally contributes negatively to the spatial variance. On the other hand, the spatial variance of the temporal anomalies, which is overall most relevant for climate and hydrological applications because it is related to soil moisture dynamics, is relatively limited and constitutes at most 2–30% (on average 9%) of the total variance. Nonetheless, this term is not negligible compared to the temporal anomalies of the spatial mean. These results suggest that a large fraction of the spatial variability of soil moisture assessed from short-term campaign may be time-invariant if other regions present a similar behavior. Moreover, we find that the rank (or temporal) stability concept, when applied to absolute soil moisture at the sites, mostly characterizes the time-invariant patterns. Indeed, sites that best represent the mean soil moisture dynamics of the network are not the same as those that best reflect mean soil moisture at any point in time. Overall, this study shows that conclusions derived from the analysis of the spatio-temporal variability of absolute soil moisture need not generally apply to temporal soil moisture anomalies, and hence to soil moisture dynamics.


1969 ◽  
Vol 14 (9) ◽  
pp. 470-471
Author(s):  
M. DAVID MERRILL
Keyword(s):  

1972 ◽  
Vol 28 (03) ◽  
pp. 447-456 ◽  
Author(s):  
E. A Murphy ◽  
M. E Francis ◽  
J. F Mustard

SummaryThe characteristics of experimental error in measurement of platelet radioactivity have been explored by blind replicate determinations on specimens taken on several days on each of three Walker hounds.Analysis suggests that it is not unreasonable to suppose that error for each sample is normally distributed ; and while there is evidence that the variance is heterogeneous, no systematic relationship has been discovered between the mean and the standard deviation of the determinations on individual samples. Thus, since it would be impracticable for investigators to do replicate determinations as a routine, no improvement over simple unweighted least squares estimation on untransformed data suggests itself.


2020 ◽  
Vol 1 (2) ◽  
pp. 56-66
Author(s):  
Irma Linda

Background: Early marriages are at high risk of marital failure, poor family quality, young pregnancies at risk of maternal death, and the risk of being mentally ill to foster marriage and be responsible parents. Objective: To determine the effect of reproductive health education on peer groups (peers) on the knowledge and perceptions of adolescents about marriage age maturity. Method: This research uses the Quasi experimental method with One group pre and post test design, conducted from May to September 2018. The statistical analysis used in this study is a paired T test with a confidence level of 95% (α = 0, 05). Results: There is an average difference in the mean value of adolescent knowledge between the first and second measurements is 0.50 with a standard deviation of 1.922. The mean difference in mean scores of adolescent perceptions between the first and second measurements was 4.42 with a standard deviation of 9.611. Conclusion: There is a significant difference between adolescent knowledge on the pretest and posttest measurements with a value of P = 0.002, and there is a significant difference between adolescent perceptions on the pretest and posttest measurements with a value of p = 0.001. Increasing the number of facilities and facilities related to reproductive health education by peer groups (peers) in adolescents is carried out on an ongoing basis at school, in collaboration with local health workers as prevention of risky pregnancy.


1988 ◽  
Vol 60 (1) ◽  
pp. 1-29 ◽  
Author(s):  
E. D. Young ◽  
J. M. Robert ◽  
W. P. Shofner

1. The responses of neurons in the ventral cochlear nucleus (VCN) of decerebrate cats are described with regard to their regularity of discharge and latency. Regularity is measured by estimating the mean and standard deviation of interspike intervals as a function of time during responses to short tone bursts (25 ms). This method extends the usual interspike-interval analysis based on interval histograms by allowing the study of temporal changes in regularity during transient responses. The coefficient of variation (CV), equal to the ratio of standard deviation to mean interspike interval, is used as a measure of irregularity. Latency is measured as the mean and standard deviation of the latency of the first spike in response to short tone bursts, with 1.6-ms rise times. 2. The regularity and latency properties of the usual PST histogram response types are shown. Five major PST response type classes are used: chopper, primary-like, onset, onset-C, and unusual. The presence of a prepotential in a unit's action potentials is also noted; a prepotential implies that the unit is recorded from a bushy cell. 3. Units with chopper PST histograms give the most regular discharge. Three varieties of choppers are found. Chop-S units (regular choppers) have CVs less than 0.35 that are approximately constant during the response; chop-S units show no adaptation of instantaneous rate, as measured by the inverse of the mean interspike interval. Chop-T units have CVs greater than 0.35, show an increase in irregularity during the response and show substantial rate adaptation. Chop-U units have CVs greater than 0.35, show a decrease in irregularity during the response, and show a variety of rate adaptation behaviors, including negative adaptation (an increase in rate during a short-tone response). Irregular choppers (chop-T and chop-U units) rarely have CVs greater than 0.5. Choppers have the longest latencies of VCN units; all three groups have mean latencies at least 1 ms longer than the shortest auditory nerve (AN) fiber mean latencies. 4. Chopper units are recorded from stellate cells in VCN (35, 42). Our results for chopper units suggest a model for stellate cells in which a regularly firing action potential generator is driven by the summation of the AN inputs to the cell, where the summation is low-pass filtered by the membrane capacitance of the cell.(ABSTRACT TRUNCATED AT 400 WORDS)


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2421
Author(s):  
Roberta Fusco ◽  
Vincenza Granata ◽  
Mauro Mattace Raso ◽  
Paolo Vallone ◽  
Alessandro Pasquale De Rosa ◽  
...  

Purpose. To combine blood oxygenation level dependent magnetic resonance imaging (BOLD-MRI), dynamic contrast enhanced MRI (DCE-MRI), and diffusion weighted MRI (DW-MRI) in differentiation of benign and malignant breast lesions. Methods. Thirty-seven breast lesions (11 benign and 21 malignant lesions) pathologically proven were included in this retrospective preliminary study. Pharmaco-kinetic parameters including Ktrans, kep, ve, and vp were extracted by DCE-MRI; BOLD parameters were estimated by basal signal S0 and the relaxation rate R2*; and diffusion and perfusion parameters were derived by DW-MRI (pseudo-diffusion coefficient (Dp), perfusion fraction (fp), and tissue diffusivity (Dt)). The correlation coefficient, Wilcoxon-Mann-Whitney U-test, and receiver operating characteristic (ROC) analysis were calculated and area under the ROC curve (AUC) was obtained. Moreover, pattern recognition approaches (linear discrimination analysis and decision tree) with balancing technique and leave one out cross validation approach were considered. Results. R2* and D had a significant negative correlation (−0.57). The mean value, standard deviation, Skewness and Kurtosis values of R2* did not show a statistical significance between benign and malignant lesions (p > 0.05) confirmed by the ‘poor’ diagnostic value of ROC analysis. For DW-MRI derived parameters, the univariate analysis, standard deviation of D, Skewness and Kurtosis values of D* had a significant result to discriminate benign and malignant lesions and the best result at the univariate analysis in the discrimination of benign and malignant lesions was obtained by the Skewness of D* with an AUC of 82.9% (p-value = 0.02). Significant results for the mean value of Ktrans, mean value, standard deviation value and Skewness of kep, mean value, Skewness and Kurtosis of ve were obtained and the best AUC among DCE-MRI extracted parameters was reached by the mean value of kep and was equal to 80.0%. The best diagnostic performance in the discrimination of benign and malignant lesions was obtained at the multivariate analysis considering the DCE-MRI parameters alone with an AUC = 0.91 when the balancing technique was considered. Conclusions. Our results suggest that the combined use of DCE-MRI, DW-MRI and/or BOLD-MRI does not provide a dramatic improvement compared to the use of DCE-MRI features alone, in the classification of breast lesions. However, an interesting result was the negative correlation between R2* and D.


2021 ◽  
Vol 9 (6) ◽  
pp. 585
Author(s):  
Minghao Wu ◽  
Leen De Vos ◽  
Carlos Emilio Arboleda Chavez ◽  
Vasiliki Stratigaki ◽  
Maximilian Streicher ◽  
...  

The present work introduces an analysis of the measurement and model effects that exist in monopile scour protection experiments with repeated small scale tests. The damage erosion is calculated using the three dimensional global damage number S3D and subarea damage number S3D,i. Results show that the standard deviation of the global damage number σ(S3D)=0.257 and is approximately 20% of the mean S3D, and the standard deviation of the subarea damage number σ(S3D,i)=0.42 which can be up to 33% of the mean S3D. The irreproducible maximum wave height, chaotic flow field and non-repeatable armour layer construction are regarded as the main reasons for the occurrence of strong model effects. The measurement effects are limited to σ(S3D)=0.039 and σ(S3D,i)=0.083, which are minor compared to the model effects.


Sign in / Sign up

Export Citation Format

Share Document