Regulation of target gene expression by the vitamin D receptor - an update on mechanisms

2011 ◽  
Vol 13 (1) ◽  
pp. 45-55 ◽  
Author(s):  
J. Wesley Pike ◽  
Mark B. Meyer ◽  
Kathleen A. Bishop
Cell Cycle ◽  
2018 ◽  
Vol 17 (2) ◽  
pp. 182-190 ◽  
Author(s):  
Thy P. H. Nguyen ◽  
Hannah E. J. Yong ◽  
Tejasvy Chollangi ◽  
Shaun P. Brennecke ◽  
Susan J. Fisher ◽  
...  

Oncotarget ◽  
2015 ◽  
Vol 7 (1) ◽  
pp. 995-1013 ◽  
Author(s):  
Alissa R. Verone-Boyle ◽  
Suzanne Shoemaker ◽  
Kristopher Attwood ◽  
Carl D. Morrison ◽  
Andrew J. Makowski ◽  
...  

2002 ◽  
Vol 88 (2) ◽  
pp. 363-371 ◽  
Author(s):  
Aruna V. Krishnan ◽  
Donna M. Peehl ◽  
David Feldman

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A658-A658
Author(s):  
Olivia Z B Ginnard ◽  
Stephanie Sisley

Abstract Introduction: Vitamin D deficiency is a substantial comorbidity in 50% of pediatric patients and is linked with poorer health outcomes in children. Vitamin D levels are also shown to be inversely related to BMI. Therefore, there are many more children with low vitamin D levels due to the increasing prevalence of pediatric obesity. Pediatric patients with obesity and vitamin D deficiency also have a uniquely increased risk of metabolic syndrome, as compared to their lean peers. Measured levels of vitamin D correlate with other physiological markers of vitamin D effects in lean individuals but not obese individuals. It is possible that vitamin D levels reflect a storage form of vitamin D rather than a true reflection of vitamin D action in the body in this particular population. The aim of this study was to provide foundational knowledge to understand if expression of vitamin D receptor (VDR)-target genes may be used as a reference standard for vitamin D status in the body. Methods: We performed a secondary analysis of samples obtained from 33 obese adolescents that were consented under a past IRB-approved protocol. They were between the ages of 13 to 18 years that underwent bariatric surgery between 2004 and 2019. Data comprised of age, gender, race/ethnicity, and BMI. Samples collected included blood and subcutaneous adipose tissue. The tissue was analyzed via Real Time-PCR to obtain quantitative levels of VDR-target gene expression, which included PPARg, TLR4, THBD, CYP24A1, and VDR. Gene expression levels were normalized to the average of two housekeeping genes, GAPDH and RPLPO. Blood samples provided vitamin D levels (serum 25(OH)D). Results: VDR-target gene expression was significantly correlated between THBD, VDR, and TLR4 (p <0.05), and PPARg with THBD and TLR4 (p <0.05). There was no correlation observed between CYP24A1 gene expression and the other genes that were evaluated (p >0.05). PPARg, THBD, TLR4, CYP24A1, and VDR gene expression levels did not correlate with circulating serum 25(OH)D levels (p >0.05). Conclusion: These preliminary findings suggest that VDR-target gene expression correlates with each other but not with circulating serum 25(OH)D levels. This discrepancy supports that 25(OH)D levels do not indicate levels of vitamin D action and may not be an appropriate indicator of vitamin D deficiency in the obese population. Also, the observed CYP24A1 gene expression was limited in subcutaneous adipose tissue yet expression was seen in multiple other VDR-target genes. This emphasizes the tissue-specific nature of gene regulation of vitamin D. Further work should investigate VDR-target gene expression levels across multiple tissues of obese individuals to determine if markers of vitamin D action in one tissue are reflective of action across the body. This study may provide the first step in determining a new and more accurate biomarker for vitamin D deficiency and treatment in obesity.


2014 ◽  
Vol 58 (10) ◽  
pp. 2036-2045 ◽  
Author(s):  
Jussi Ryynänen ◽  
Antonio Neme ◽  
Tomi-Pekka Tuomainen ◽  
Jyrki K. Virtanen ◽  
Sari Voutilainen ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 2049-P
Author(s):  
REBECCA K. DAVIDSON ◽  
NOLAN CASEY ◽  
JASON SPAETH

Author(s):  
Philipp Moritz Fricke ◽  
Angelika Klemm ◽  
Michael Bott ◽  
Tino Polen

Abstract Acetic acid bacteria (AAB) are valuable biocatalysts for which there is growing interest in understanding their basics including physiology and biochemistry. This is accompanied by growing demands for metabolic engineering of AAB to take advantage of their properties and to improve their biomanufacturing efficiencies. Controlled expression of target genes is key to fundamental and applied microbiological research. In order to get an overview of expression systems and their applications in AAB, we carried out a comprehensive literature search using the Web of Science Core Collection database. The Acetobacteraceae family currently comprises 49 genera. We found overall 6097 publications related to one or more AAB genera since 1973, when the first successful recombinant DNA experiments in Escherichia coli have been published. The use of plasmids in AAB began in 1985 and till today was reported for only nine out of the 49 AAB genera currently described. We found at least five major expression plasmid lineages and a multitude of further expression plasmids, almost all enabling only constitutive target gene expression. Only recently, two regulatable expression systems became available for AAB, an N-acyl homoserine lactone (AHL)-inducible system for Komagataeibacter rhaeticus and an l-arabinose-inducible system for Gluconobacter oxydans. Thus, after 35 years of constitutive target gene expression in AAB, we now have the first regulatable expression systems for AAB in hand and further regulatable expression systems for AAB can be expected. Key points • Literature search revealed developments and usage of expression systems in AAB. • Only recently 2 regulatable plasmid systems became available for only 2 AAB genera. • Further regulatable expression systems for AAB are in sight.


Sign in / Sign up

Export Citation Format

Share Document