downstream target gene
Recently Published Documents





2022 ◽  
Vol 12 (4) ◽  
pp. 717-723
Bing Pan ◽  
Binghui Liu ◽  
Juhua Pan ◽  
Jian Xin ◽  
Chenglin Fu

Introduction: Breast cancer (BC) developed in the glandular epithelial tissue of breast. microRNA (miR)-367 is an important player in cancer progression, but has never been studied in BC. This experiment tries to probe the mechanism of miR-367 in BC treatment with downstream target gene. Materials and Methods: Human BC cell lines and healthy breast epithelium cells were applied in this study. After the transfection of miR-367 inhibitor or mimic into BC cells, functional assays were conducted to measure cell growth. Afterwards, flow cytometry was employed in apoptosis verification. Then, target relation between miR-367 and ARID1B was certified. Furthermore, ARID1B level was also measured. Results: miR-367 was underexpressed in human BC cells (p < 0.05). Besides, overexpressed miR-367 inhibited BC cell proliferation and encouraged apoptosis, while underexpressed miR-367 led to an opposite outcome (p < 0.05). This experiment then implied that miR-367 dramatically suppressed the activity of cell transfected with ARID1B-wild type. miR-367 overexpression quenched ARID1B level in BC cells; while silencing miR-367 upregulated ARID1B expression (p < 0.05). Conclusion: Our experiment discovered that miR-367 quenched BC cell growth and promoted apoptosis by targeting ARID1B. This investigation may provide novel insights in BC treatment.

2022 ◽  
Vol 12 ◽  
Zhi Zeng ◽  
Liangyu Fei ◽  
Juntao Yang ◽  
Jun Zuo ◽  
Zelin Huang ◽  

Objective: Osteoporosis is caused by the dysregulation of bone homeostasis which is synergistically mediated by osteoclasts and osteoblasts. MiR-27a-3p is a key inhibitor of bone formation. Hence, unearthing the downstream target gene of miR-27a-3p is of great significance to understand the molecular mechanism of osteoporosis.Methods: Bioinformatics analysis was utilized to find the downstream target gene of miR-27a-3p, and dual-luciferase reporter assay was conducted to validate the interplay of miR-27a-3p and GLP1R. Besides, qRT-PCR, Western blot, and enzyme-linked immunosorbent assay (ELISA) were employed to verify the impact of miR-27a-3p on GLP1R expression and the differentiation, autophagy, and inflammatory response of MC3T3-E1 pre-osteoblasts.Results: Dual-luciferase assay validated that miR-27a-3p directly targeted GLP1R. Additionally, posttreatment of MC3T3-E1 cells with miR-27a-3p mimics resulted in a remarkable decrease in expression levels of GLP1R, cell differentiation marker gene, autophagy marker gene, and AMPK. These results indicated that miR-27a-3p targeted GLP1R to inhibit AMPK signal activation and pre-osteoblast differentiation and autophagy, while promoting the release of inflammatory factors.Conclusion: The miR-27a-3p/GLP1R regulatory axis in pre-osteoblasts contributes to understanding the molecular mechanism of osteoporosis.

2021 ◽  
Rasmani Hazra ◽  
Lily Brine ◽  
Libia Garcia ◽  
Brian Benz ◽  
Napon Chirathivat ◽  

The mammalian genome encodes thousands of long non-coding RNAs (lncRNAs) that are developmentally regulated and differentially expressed across tissues, suggesting possible roles in cellular differentiation. Despite this expression pattern, little is known about how lncRNAs influence lineage commitment at the molecular level. Here, we reveal that perturbation of an embryonic stem cell (ESC)-specific lncRNA, Pluripotency associated transcript 4 (Platr4), in ESCs directly influences the downstream meso/endoderm differentiation program without affecting pluripotency. We further show that Platr4 interacts with the TEA domain transcription factor 4 (Tead4) to regulate the expression of a downstream target gene crucial in the cardiac lineage program known as connective tissue growth factor (Ctgf). Importantly, Platr4 knockout mice exhibit myocardial atrophy, valve mucinous degenration associated with reduced cardiac output and sudden heart failure. Together, our findings provide evidence that Platr4 expression in undifferentiated ESCs is critical for downstream lineage differentiation, highlighting its importance in disease modeling and regenerative medicine.

2021 ◽  
Tian Rong Zhang ◽  
WeiQiang Huang

Abstract Background Angiogenesis is an important factor in promoting vascular repair and a valuable process in the treatment of cardiovascular diseases. Circular RNAs (circRNAs) are widely expressed in eukaryotic cells and play an important role in the regulation of endothelial cells (ECs). In our study, bioinformatics analysis and real-time fluorescent PCR detection revealed that circRNA 0010928 (circ-0010928) is differentially expressed in human cardiac microvascular endothelial cells (HCMECs). Material & Methods We evaluated the role of circ-0010928 in HCMECs. Then, we can verify the function of circ-0010928 in HCMECs by cell counting kit-8 (CCK8), scratch test, transwell experiment, tube forming experiment, flow cytometry. Use dual luciferase experiment to detect the binding relationship between circ-0010928, miR-921 and LSM14A. Results Overexpression of circ-0010928 inhibited the proliferation, migration and tube formation of HCMECs under hypoxic conditions and promoted their apoptosis. In addition, dual luciferase reporter assays confirmed that circ-0010928 acted as a sponge of miR-921 and LSM14A as a downstream target gene of miR-921. Silencing miR-921 could also inhibit the proliferation, migration and tube formation of HCMECs and negatively regulate angiogenesis. Conclusion CircRNA-0010928 may inhibit the function of miRNA-921by combining with miRNA-921, and then miRNA-921 plays a role in regulating LSM14A, thereby regulating the state of angiogenesis.

Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Yi Shi ◽  
Ji-Bin Liu ◽  
Jing Deng ◽  
Da-Zhi Zou ◽  
Jian-Jun Wu ◽  

AbstractHepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide due to its high degree of malignancy, high incidence, and low survival rate. However, the underlying mechanisms of hepatocarcinogenesis remain unclear. Long non coding RNA (lncRNA) has been shown as a novel type of RNA. lncRNA by acting as ceRNA can participate in various biological processes of HCC cells, such as tumor cell proliferation, migration, invasion, apoptosis and drug resistance by regulating downstream target gene expression and cancer-related signaling pathways. Meanwhile, lncRNA can predict the efficacy of treatment strategies for HCC and serve as a potential target for the diagnosis and treatment of HCC. Therefore, lncRNA serving as ceRNA may become a vital candidate biomarker for clinical diagnosis and treatment. In this review, the epidemiology of HCC, including morbidity, mortality, regional distribution, risk factors, and current treatment advances, was briefly discussed, and some biological functions of lncRNA in HCC were summarized with emphasis on the molecular mechanism and clinical application of lncRNA-mediated ceRNA regulatory network in HCC. This paper can contribute to the better understanding of the mechanism of the influence of lncRNA-mediated ceRNA networks (ceRNETs) on HCC and provide directions and strategies for future studies.

Peng Wang ◽  
Zhiwei Wang ◽  
Min Zhang ◽  
Qi Wu ◽  
Feng Shi ◽  

Despite decades of study into aortic dissection (AD), a lethal cardiovascular emergency due to a tear in the aorta intima or bleeding within the aortic wall, leading to the separation of the different layers of it, the factors that influence its progression and the deeper regulatory mechanisms remain poorly understood. Nowadays, with the maturity of N6-methyladenosine (m6A) sequence technology, m6A modification, one type of RNA epigenesis, has gradually become a new research hotspot for epigenetic molecular regulation. Especially recently, increasing evidence has revealed that m6A modification functions as a pivotal post-transcriptional modification to influence the progression of multiple diseases. Based on these findings, it is reasonable to speculate that m6A modification may affect the onset and progression of AD. To explore the validity of our conjecture and to elucidate its underlying molecular mechanism of action, we conducted the present study. In this study, we found that KIAA1429 is downregulated while ALKBH5 is upregulated in aortic tissues from AD patients. Furthermore, gain- and loss-of-function studies showed that KIAA1429 and ALKBH5 can oppositely regulate HASMC proliferation, HAEC apoptosis, and AD progression in AngII-infused mice. Mechanistically, we demonstrated that KIAA1429/ALKBH5-mediated m6A modifications can regulate the processing of pri-miR-143-3p through interacting with the microprocessor protein DGCR8, thus indirectly regulating the downstream target gene of mature miR-143-3p, DDX6, to perform their biological functions in vitro and in vivo. Our findings have revealed a novel connection between m6A modification and AD progression and may provide a novel molecular basis for subsequent researchers to search for novel therapeutic approaches to improve the health of patients struggling with AD.

2021 ◽  
Vol 22 (16) ◽  
pp. 8650
Zhongyuan Deng ◽  
Yakun Zhang ◽  
Yalu Li ◽  
Kaiyuan Huang ◽  
Xuewei Chen ◽  

The Masculinizer (Masc) gene has been known to control sex development and dosage compensation in lepidopterans. However, it remains unclear whether its ortholog exists and plays the same roles in distantly related lepidopterans such as Helicoverpa armigera. To address this question, we cloned Masc from H. armigera (HaMasc), which contains all essential functional domains of BmMasc, albeit with less than 30% amino acid sequence identity with BmMasc. Genomic PCR and qPCR analyses showed that HaMasc is a Z chromosome-linked gene since its genomic content in males (ZZ) was two times greater than that in females (ZW). RT-PCR and RT-qPCR analyses revealed that HaMasc expression was sex- and stage-biased, with significantly more transcripts in males and eggs than in females and other stages. Transfection of a mixture of three siRNAs of HaMasc into a male embryonic cell line of H. armigera led to the appearance of female-specific mRNA splicing isoforms of H. armigera doublesex (Hadsx), a downstream target gene of HaMasc in the H. armigera sex determination pathway. The knockdown of HaMasc, starting from the third instar larvae resulted in a shift of Hadsx splicing from male to female isoforms, smaller male pupa and testes, fewer but larger/longer spermatocytes and sperm bundles, delayed pupation and internal fusion of the testes and follicles. These data demonstrate that HaMasc functions as a masculinizing gene in the H. armigera sex-determination cascade.

2021 ◽  
Vol 22 (15) ◽  
pp. 8147
Young Yun Jung ◽  
Chulwon Kim ◽  
In Jin Ha ◽  
Seok-Geun Lee ◽  
Junhee Lee ◽  

Pyrimethamine (Pyri) is being used in combination with other medications to treat serious parasitic infections of the body, brain, or eye and to also reduce toxoplasmosis infection in the patients with HIV infection. Additionally, Pyri can display significant anti-cancer potential in different tumor models, but the possible mode of its actions remains unclear. Hence, in this study, the possible anti-tumoral impact of Pyri on human chronic myeloid leukemia (CML) was deciphered. Pyri inhibited cell growth in various types of tumor cells and exhibited a marked inhibitory action on CML cells. In addition to apoptosis, Pyri also triggered sustained autophagy. Targeted inhibition of autophagy sensitized the tumor cells to Pyri-induced apoptotic cell death. Moreover, the activation of signal transducer and activator of transcription 5 (STAT5) and its downstream target gene Bcl-2 was attenuated by Pyri. Accordingly, small interfering RNA (siRNA)-mediated STAT5 knockdown augmented Pyri-induced autophagy and apoptosis and promoted the suppressive action of Pyri on cell viability. Moreover, ectopic overexpression of Bcl-2 protected the cells from Pyri-mediated autophagy and apoptosis. Overall, the data indicated that the attenuation of STAT5-Bcl-2 cascade by Pyri can regulate its growth inhibitory properties by simultaneously targeting both apoptosis and autophagy cell death mechanism(s).

Lijun Wang ◽  
Xiaojun Wang ◽  
Pengwei Yan ◽  
Yatian Liu ◽  
Xuesong Jiang

To improve the survival rate and cure rate of patients, it is necessary to find a new treatment scheme according to the molecular composition of (ESCC) in esophageal squamous cell carcinoma. Long non-coding RNAs (lncRNAs) regulate the progression of ESCC by various pathophysiological pathways. We explored the possible function of the lncRNA LINC00261 (LINC00261) on cisplatin (DDP) resistance of ESCC and its relative molecular mechanisms. In the study, we found that LINC00261 was downregulated in ESCC tissues, cell lines, and DDP-resistant ESCC patients. Besides, overexpression of LINC00261 not only inhibited cell proliferation, and DDP resistance but also promotes cell apoptosis. Further mechanistic research showed that LINC00261 sponged miR-545-3p which was negatively correlated with the expression of LINC00261. In addition, functional experiments revealed that upregulation of miR-766-5p promoted proliferation and enhanced DDP resistance. Subsequently, MT1M was testified to be the downstream target gene of miR-545-3p. Rescue experiments revealed that overexpression of MT1M largely restores miR-545-3p mimics-mediated function on ESCC progression. Our results demonstrate that the LINC00261 suppressed the DDP resistance of ESCC through miR-545-3p/MT1M axis.

2021 ◽  
Vol 14 ◽  
Yue Qi ◽  
Nana Ma ◽  
Xiaofan Chen ◽  
Yue Wang ◽  
Wei Zhang ◽  

Circular RNAs (circRNAs) are covalently closed single-stranded RNA molecules. After derived from precursor mRNA back-splicing, circRNAs play important roles in many biological processes. Recently, it was shown that several circRNAs were enriched in the mammalian brain with unclear functions. The expression of circRtn4 in the mouse brain was increased with the differentiation of primary neurons. In our study, knockdown of circRtn4 inhibited neurite growth, while overexpression of circRtn4 significantly increased neurite length. By dual-luciferase reporter assay and RNA antisense purification assay, circRtn4 was identified as a miRNA sponge for miR-24-3p. Moreover, knockdown of miR-24-3p increased neurite length, while overexpression of miR-24-3p significantly inhibited neurite growth. Furthermore, CHD5 was confirmed to be a downstream target gene of miR-24-3p. And CHD5 silence counteracted the positive effect of circRtn4 overexpression on neurite growth. In conclusion, circRtn4 may act as the sponge for miR-24-3p to promote neurite growth by regulating CHD5.

Sign in / Sign up

Export Citation Format

Share Document