Changes in vitamin D target gene expression in adipose tissue monitor the vitamin D response of human individuals

2014 ◽  
Vol 58 (10) ◽  
pp. 2036-2045 ◽  
Author(s):  
Jussi Ryynänen ◽  
Antonio Neme ◽  
Tomi-Pekka Tuomainen ◽  
Jyrki K. Virtanen ◽  
Sari Voutilainen ◽  
...  
2002 ◽  
Vol 88 (2) ◽  
pp. 363-371 ◽  
Author(s):  
Aruna V. Krishnan ◽  
Donna M. Peehl ◽  
David Feldman

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A658-A658
Author(s):  
Olivia Z B Ginnard ◽  
Stephanie Sisley

Abstract Introduction: Vitamin D deficiency is a substantial comorbidity in 50% of pediatric patients and is linked with poorer health outcomes in children. Vitamin D levels are also shown to be inversely related to BMI. Therefore, there are many more children with low vitamin D levels due to the increasing prevalence of pediatric obesity. Pediatric patients with obesity and vitamin D deficiency also have a uniquely increased risk of metabolic syndrome, as compared to their lean peers. Measured levels of vitamin D correlate with other physiological markers of vitamin D effects in lean individuals but not obese individuals. It is possible that vitamin D levels reflect a storage form of vitamin D rather than a true reflection of vitamin D action in the body in this particular population. The aim of this study was to provide foundational knowledge to understand if expression of vitamin D receptor (VDR)-target genes may be used as a reference standard for vitamin D status in the body. Methods: We performed a secondary analysis of samples obtained from 33 obese adolescents that were consented under a past IRB-approved protocol. They were between the ages of 13 to 18 years that underwent bariatric surgery between 2004 and 2019. Data comprised of age, gender, race/ethnicity, and BMI. Samples collected included blood and subcutaneous adipose tissue. The tissue was analyzed via Real Time-PCR to obtain quantitative levels of VDR-target gene expression, which included PPARg, TLR4, THBD, CYP24A1, and VDR. Gene expression levels were normalized to the average of two housekeeping genes, GAPDH and RPLPO. Blood samples provided vitamin D levels (serum 25(OH)D). Results: VDR-target gene expression was significantly correlated between THBD, VDR, and TLR4 (p <0.05), and PPARg with THBD and TLR4 (p <0.05). There was no correlation observed between CYP24A1 gene expression and the other genes that were evaluated (p >0.05). PPARg, THBD, TLR4, CYP24A1, and VDR gene expression levels did not correlate with circulating serum 25(OH)D levels (p >0.05). Conclusion: These preliminary findings suggest that VDR-target gene expression correlates with each other but not with circulating serum 25(OH)D levels. This discrepancy supports that 25(OH)D levels do not indicate levels of vitamin D action and may not be an appropriate indicator of vitamin D deficiency in the obese population. Also, the observed CYP24A1 gene expression was limited in subcutaneous adipose tissue yet expression was seen in multiple other VDR-target genes. This emphasizes the tissue-specific nature of gene regulation of vitamin D. Further work should investigate VDR-target gene expression levels across multiple tissues of obese individuals to determine if markers of vitamin D action in one tissue are reflective of action across the body. This study may provide the first step in determining a new and more accurate biomarker for vitamin D deficiency and treatment in obesity.


2015 ◽  
Vol 173 (3) ◽  
pp. 283-290 ◽  
Author(s):  
Mikkel H Vendelbo ◽  
Britt Christensen ◽  
Solbritt B Grønbæk ◽  
Morten Høgild ◽  
Michael Madsen ◽  
...  

ObjectiveFasting and exercise stimulates, whereas glucose suppresses GH secretion, but it is uncertain how these conditions impact GH signaling in peripheral tissues. To test the original ‘feast and famine hypothesis’ by Rabinowitz and Zierler, according to which the metabolic effects of GH are predominant during fasting, we specifically hypothesized that fasting and exercise act in synergy to increase STAT-5b target gene expression.Design and methodsEight healthy men were studied on two occasions in relation to a 1 h exercise bout: i) with a concomitant i.v. glucose infusion (‘feast’) and ii) after a 36 h fast (‘famine’). Muscle and fat biopsy specimens were obtained before, immediately after, and 30 min after exercise.ResultsGH increased during exercise on both examination days and this effect was amplified by fasting, and free fatty acid (FFA) levels increased after fasting. STAT-5b phosphorylation increased similarly following exercise on both occasions. In adipose tissue, suppressors of cytokine signaling 1 (SOCS1) and SOCS2 were increased after exercise on the fasting day and both fasting and exercise increased cytokine inducible SH2-containing protein (CISH). In muscle, SOCS2 and CISH mRNA were persistently increased after fasting. Muscle SOCS1, SOCS3, and CISH mRNA expression increased, whereas SOCS2 decreased after exercise on both examination days.ConclusionsThis study demonstrates that fasting and exercise act in tandem to amplify STAT-5b target gene expression (SOCS and CISH) in adipose and muscle tissue in accordance with the ‘feast and famine hypothesis’; the adipose tissue signaling responses, which hitherto have not been scrutinized, may play a particular role in promoting FFA mobilization.


Cell Cycle ◽  
2018 ◽  
Vol 17 (2) ◽  
pp. 182-190 ◽  
Author(s):  
Thy P. H. Nguyen ◽  
Hannah E. J. Yong ◽  
Tejasvy Chollangi ◽  
Shaun P. Brennecke ◽  
Susan J. Fisher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document