Marine biology of the pacific lamprey Entosphenus tridentatus

2019 ◽  
Vol 29 (4) ◽  
pp. 767-788 ◽  
Author(s):  
Benjamin J. Clemens ◽  
Laurie Weitkamp ◽  
Kevin Siwicke ◽  
Joy Wade ◽  
Julianne Harris ◽  
...  
2003 ◽  
Vol 20 (9) ◽  
pp. 1095-1098 ◽  
Author(s):  
Yuji Yamazaki ◽  
Norio Fukutomi ◽  
Korenori Takeda ◽  
Akihisa Iwata

Author(s):  
V.K. Fishchenko ◽  
P.S. Zimin ◽  
A.V. Zatserkovnyy ◽  
A.E. Subote ◽  
A.V. Golik ◽  
...  

В Тихоокеанском океанологическом институте (ТОИ) ДВО РАН с 2012 г. ведутся разработки и исследования возможностей технологий стационарного подводного видеонаблюдения. Развернуты три подводныхкомплекса: два в бухте Алексеева (о-в Попова) и один в бухте Витязь (зал. Посьета). К настоящему времени накоплены значительные объемы информации в виде моментальных снимков и видеозаписей подводныхсцен. Разработаны интерфейсы для предоставления этой информации пользователям по каналам сети Интернет. Разработаны технологии поддержки работы территориально разнесенных экспертов, составляющихбиологические описания видеоматериалов, подобных тем, которые разрабатываются в ведущих зарубежныхорганизациях по морской биологии. Разработаны и апробированы методики оценивания по видеоинформации параметров жизнедеятельности некоторых видов морских гидробионтов. Благодаря непрерывностинаблюдения зафиксировано нескольких редких случаев, представляющих интерес для морских биологов. Разработаны и апробированы методики оценивания гидрологических характеристик среды на основе анализавидеотрансляций с подводных камер. Эти результаты представляются важными в контексте сопровождениянаблюдений за жизнедеятельностью морской биоты данными о внешних условиях, в которых она происходит. Продемонстрирована возможность использования звукового канала камер для регистрации и анализаакустических шумов от морских судов. Продемонстрирована возможность применения подводных видеокомплексов для организации экспериментов по изучению реакции морских гидробионтов на воздействие целенаправленных физических сигналов.Since 2012, the Pacific Oceanological Institute of FarEastern Branch of the Russian Academy of Science has beendeveloping and studying the capabilities of technologies ofstationary underwater video surveillance. Three of the underwatercomplexes have been deployed in different waterareas: two in the Alekseev Bay (Popova Island) and one inVityaz Bay (Posyet Gulf). At this point, complexes have accumulateda significant amount of data in the form of snapshotsand video recordings of underwater scenes, which canbe accessed through designed Internet-based interfaces. Allthe surveillance systems contain technologies as a support ofthe work of geographically dispersed experts involved in thebiological description of video materials, similar to ones developedin leading worldwide marine biology organizations.Besides, the estimation of vital parameters of some marinelife species by the video recordings can be performed usingdeveloped and tested methods. Thanks to continuous observation,the designed systems have already recorded severalrare cases of interest for marine biologists. Hydrologicalcharacteristics of surrounding media can be studied usingdeveloped and tested methods of analysis of video streamingfrom underwater cameras. These results are especially crucialfor accompanying observations of the vital activity ofmarine organisms with data on external conditions in whichthey occur. Cameras built-in audio channels can be used forrecording and analyzing noises of marine vessels. Designedunderwater video complexes provide an opportunity forconducting experiments on studying the reaction of marineorganisms to dedicated physical signals.


F1000Research ◽  
2021 ◽  
Vol 9 ◽  
pp. 915
Author(s):  
Muhammad Afrisal ◽  
Yukio Iwatsuki ◽  
Andi Iqbal Burhanuddin

Background: The Lethrinidae (emperors) include many important food fish species. Accurate determination of species and stocks is important for fisheries management. The taxonomy of the genus Lethrinus is problematic, for example with regards to the identification of the thumbprint emperor Lethrinus harak. Little research has been done on L. harak diversity in the Pacific and Indian Oceans. This study aimed to evaluate the morphometric and genetic characters of the thumbprint emperor, L. harak (Forsskål, 1775) in the Pacific and Indian Oceans. Methods: This research was conducted in the Marine Biology Laboratory, Faculty of Marine Science and Fisheries, Hasanuddin University, and Division of Fisheries Science, University of Miyazaki. Morphometric character measurements were based on holotype character data, while genetic analysis was performed on cytochrome oxidase subunit I (COI) sequence data. Morphometric data were analysed using principal component analysis (PCA) statistical tests in MINITAB, and genetic data were analysed in MEGA 6. Results: Statistical test results based on morphometric characters revealed groupings largely representative of the Indian and Pacific Oceans. The Seychelles was separated from other Indian Ocean sites and Australian populations were closer to the Pacific than the Indian Ocean group. The genetic distance between the groups was in the low category (0.000 - 0.042). The phylogenetic topology reconstruction accorded well with the morphometric character analysis, with two main L. harak clades representing Indian and Pacific Ocean, and Australia in the Pacific Ocean clade. Conclusions: These results indicate that the morphological character size of L. harak from Makassar and the holotype from Saudi Arabia have changed. Genetic distance and phylogeny reconstruction are closely related to low genetic distance.


2017 ◽  
Vol 8 (2) ◽  
pp. 640-647 ◽  
Author(s):  
Jeffrey C. Jolley ◽  
Christina T. Uh ◽  
Gregory S. Silver ◽  
Timothy A. Whitesel

Abstract Native lamprey populations are declining worldwide. In the Pacific Northwest focus on conservation and management of these ecologically and culturally important species has increased. Concern has emerged regarding the effects of sampling and handling of lamprey, with little to no attention given to the larval lifestage. We monitored the survival of larval Pacific Lamprey Entosphenus tridentatus and Lampetra spp. after backpack electrofishing, deepwater electrofishing and suction-pumping, anesthesia, and handling. We performed survival trials on wild-caught lamprey (n = 15 larvae in each trial) collected from the Clackamas River drainage in Oregon, USA, coupled with control group trials from lamprey sourced from a hatchery (n = 10 larvae). Short-term (96 h) survival was >98% with only one observed mortality. Delayed mortality (1 wk) was observed for four individuals that had fungus; two of those were positive for the bacteria Aeromonas hyrdrophila. We recorded blood hematocrit as a secondary measure of stress. The baseline, nonstressed larvae hematocrit levels did not differ from those of fish that had undergone stress through electrofishing, suction-pumping, and handling without anesthesia. Electrofishing, suction-pumping, and anesthesia showed no short-term negative effects on larval lamprey although potential long-term effects remain unstudied. These techniques appear to provide efficient and relatively safe methods for collecting and surveying larval lamprey.


2020 ◽  
Vol 97 (3) ◽  
pp. 804-816
Author(s):  
Timothy A. Whitesel ◽  
Michelle McGree ◽  
Gregory S. Silver

2019 ◽  
Vol 10 (2) ◽  
pp. 517-524 ◽  
Author(s):  
Jeffrey C. Jolley ◽  
Kenneth M. Lujan

Abstract Interest in conservation, management, and captive rearing of Pacific Lamprey Entosphenus tridentatus in the Pacific Northwest has risen in recent years. General and specific information regarding the occurrence of fish pathogens and the risk of Pacific Lamprey as a vector for pathogens to other species is not well understood. Specific efforts to captively rear or artificially propagate Pacific Lamprey at facilities that are used for Pacific salmon Oncorhynchus spp. have increased. We performed fish health surveys on wild-caught larval and adult Pacific Lamprey from locations that were used as lamprey sources for captive research to determine the occurrence of bacteria, viruses, and parasites that may be pathogens. A variety of potential pathogens was detected, most notably Aeromonas hydrophila and Vibrio vulnificus from larval Pacific Lamprey and A. salmonicida from adult lampreys. There was a general lack of pathogenic activity and absence of viral detections from all lampreys. The diversity of bacteria encountered from the larvae in our study could be indicative of the wide diversity of bacteria that is known to be associated with larval lamprey in general. Further efforts to understand pathogenic risk from Pacific Lamprey to salmonid propagation programs are warranted.


Sign in / Sign up

Export Citation Format

Share Document