Microwave-assisted synthesis of zinc oxide and its performance in photodegradation of CTMAB

2016 ◽  
Vol 43 (2) ◽  
pp. 971-982 ◽  
Author(s):  
Yanxiu Liu ◽  
Hua Song ◽  
Kenan Zhu ◽  
Feng Li
RSC Advances ◽  
2016 ◽  
Vol 6 (116) ◽  
pp. 115317-115325 ◽  
Author(s):  
Yaru Yan ◽  
Qitong Huang ◽  
Chan Wei ◽  
Shirong Hu ◽  
Hanqiang Zhang ◽  
...  

Cyclic voltammetry of HQ and CC recorded on Nafion/CDs–ZnO/MWCNTs/GCE.


RSC Advances ◽  
2015 ◽  
Vol 5 (83) ◽  
pp. 67988-67995 ◽  
Author(s):  
Rajesh Kumar ◽  
Rajesh Kumar Singh ◽  
Alfredo R. Vaz ◽  
Stanislav A. Moshkalev

A rapid and facile microwave-assisted method has been developed for the deposition of a zinc oxide layer on partially microwave exfoliated graphene. The as-prepared hybrids demonstrate enhanced electrochemical properties and show quenching phenomena.


2010 ◽  
Vol 93-94 ◽  
pp. 643-646
Author(s):  
Pusit Pookmanee ◽  
Supasima Makarunkamol ◽  
Sakchai Satienperakul ◽  
Jiraporn Kittikul ◽  
Sukon Phanichphant

Zinc oxide micropowder was synthesized by a microwave-assisted method. Zinc nitrate and ammonium hydroxide were used as the starting precursors with the mole ratio of 1:1. The white precipitated powder was formed after adding ammonium hydroxide until the pH of final solution was 9 and treated with the microwave radiation power at 1000 Watt for 2-6 min. The phase of zinc oxide micropowder was examined by X-ray diffraction (XRD). A single phase of hexagonal structure was obtained. The morphology and chemical composition of zinc oxide micropowder were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The particle was plate-like in shape with the range of particle size of 0.1-0.5 µm. The elemental composition of zinc oxide showed the characteristic X-ray energy value as follows: zinc of Lα = 1.012 keV, Kα = 8.630 keV and Kβ = 9.570 keV and oxygen of Kα = 0.525 keV, respectively.


Quimica Hoy ◽  
2012 ◽  
Vol 2 (3) ◽  
pp. 3
Author(s):  
Idalia Gómez ◽  
Miguel José Yucam´án ◽  
Flor Palomar

A microwave-assisted solution-phase approach has been applied for the synthesis ofzinc oxide microstructures. Toe synthesis procedure was carried out by using the reagents: Zinc ni trate and Methenamine, at stoichiometric ratio. Analysis by means ofX-ray Diffraction (XRD) shows a crystalline phase in hexagonal wurtzite arrangement for ZnO. The presence ofmicrostar shaped zinc oxide (2-3μm) with nanorods,f50nm) arranged has been confirmed from High Resolution Scanning Electron Microscopy (HRSEM). The formation of nanorods was confirmed by Transmission Electron Microscopy. In Raman spectroscopy a red shift was detected in the microstructures compared with ZnO bulk. High crystalline materials without additional post-synthesis treatrnent were found.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 212 ◽  
Author(s):  
Nadia Garino ◽  
Tania Limongi ◽  
Bianca Dumontel ◽  
Marta Canta ◽  
Luisa Racca ◽  
...  

Herein we report a novel, easy, fast and reliable microwave-assisted synthesis procedure for the preparation of colloidal zinc oxide nanocrystals (ZnO NCs) optimized for biological applications. ZnO NCs are also prepared by a conventional solvo-thermal approach and the properties of the two families of NCs are compared and discussed. All of the NCs are fully characterized in terms of morphological analysis, crystalline structure, chemical composition and optical properties, both as pristine nanomaterials or after amino-propyl group functionalization. Compared to the conventional approach, the novel microwave-derived ZnO NCs demonstrate outstanding colloidal stability in ethanol and water with long shelf-life. Furthermore, together with their more uniform size, shape and chemical surface properties, this long-term colloidal stability also contributes to the highly reproducible data in terms of biocompatibility. Actually, a significantly different biological behavior of the microwave-synthesized ZnO NCs is reported with respect to NCs prepared by the conventional synthesis procedure. In particular, consistent cytotoxicity and highly reproducible cell uptake toward KB cancer cells are measured with the use of microwave-synthesized ZnO NCs, in contrast to the non-reproducible and scattered data obtained with the conventionally-synthesized ones. Thus, we demonstrate how the synthetic route and, as a consequence, the control over all the nanomaterial properties are prominent points to be considered when dealing with the biological world for the achievement of reproducible and reliable results, and how the use of commercially-available and under-characterized nanomaterials should be discouraged in this view.


2019 ◽  
Vol 67 (2) ◽  
pp. 316-323 ◽  
Author(s):  
Manjunath Giridhar ◽  
Halehatty S. Bhojya Naik ◽  
Chatnalli N. Sudhamani ◽  
Mustur C. Prabakara ◽  
Rajappa Kenchappa ◽  
...  

2018 ◽  
Vol 775 ◽  
pp. 163-168
Author(s):  
Saberina I. Saberon ◽  
Monet Concepcion Maguyon-Detras ◽  
Maria Victoria P. Migo ◽  
Marvin U. Herrera ◽  
Ronniel D. Manalo

Nanostructured zinc oxide (ZnO) particles were grown on paper substrate made from Abaca hybrid 7 pulp. Microwave irradiation technique was used at power levels (180 and 540W) and exposure times (5, 10, 20 and 25 minutes). Chemical transformations were observed using Fourier Transform Infrared (FTIR) Spectroscopy. The effects of the power levels and exposure times on the morphology of the nanostructures were determined using scanning electron microscopy. FTIR spectra proved the embedment of ZnO on the paper substrate. Power levels and exposure times affected the distribution, particle size and structure of the ZnO nanoparticles. Higher power level and longer exposure resulted to the formation of more ZnO with larger particles. Grainlike and flowerlike ZnO nanostructures were formed at lower and higher levels, respectively.


2020 ◽  
Vol 2 (5) ◽  
Author(s):  
Kazi Rakib Ahammed ◽  
Md. Ashaduzzaman ◽  
Shujit Chandra Paul ◽  
Mithun Rani Nath ◽  
Snahasish Bhowmik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document