Synthesis and structures of 4,5-dimethyl-1,3-bis(pyridin-2-ylmethyl)-1H-imidazolium chloride and 1,1′-bis(pyridin-2-ylmethyl)-2,2′-bis(4,5-dimethylimidazole)

2021 ◽  
Vol 70 (10) ◽  
pp. 1957-1963
Author(s):  
I. V. Lapshin ◽  
A. V. Cherkasov ◽  
A. A. Trifonov
Keyword(s):  
1985 ◽  
Vol 50 (4) ◽  
pp. 845-853 ◽  
Author(s):  
Miloslav Šorm ◽  
Miloslav Procházka ◽  
Jaroslav Kálal

The course of hydrolysis of an ester, 4-acetoxy-3-nitrobenzoic acid catalyzed with poly(1-methyl-3-allylimidazolium bromide) (IIa), poly[l-methyl-3-(2-propinyl)imidazolium chloride] (IIb) and poly[l-methyl-3-(2-methacryloyloxyethyl)imidazolium bromide] (IIc) in a 28.5% aqueous ethanol was investigated as a function of pH and compared with low-molecular weight models, viz., l-methyl-3-alkylimidazolium bromides (the alkyl group being methyl, propyl, and hexyl, resp). Polymers IIb, IIc possessed a higher activity at pH above 9, while the models were more active at a lower pH with a maximum at pH 7.67. The catalytic activity at the higher pH is attributed to an attack by the OH- group, while at the lower pH it is assigned to a direct attack of water on the substrate. The rate of hydrolysis of 4-acetoxy-3-nitrobenzoic acid is proportional to the catalyst concentration [IIc] and proceeds as a first-order reaction. The hydrolysis depends on the composition of the solvent and was highest at 28.5% (vol.) of ethanol in water. The hydrolysis of a neutral ester, 4-nitrophenyl acetate, was not accelerated by IIc.


2020 ◽  
Vol 124 (47) ◽  
pp. 10776-10786
Author(s):  
Dovilė Lengvinaitė ◽  
Vytautas Klimavičius ◽  
Vytautas Balevicius ◽  
Kęstutis Aidas

2008 ◽  
Vol 108 (1-3) ◽  
pp. 276-282 ◽  
Author(s):  
Dian-Yi Li ◽  
Yi-Shiue Lin ◽  
Yu-Ching Li ◽  
Dong-Lin Shieh ◽  
Jong-Liang Lin
Keyword(s):  

2011 ◽  
Vol 11 (3) ◽  
pp. 259-263 ◽  
Author(s):  
Somayeh Daneshjoo ◽  
Neda Akbari ◽  
Abbas Akhavan Sepahi ◽  
Bijan Ranjbar ◽  
Ramezan-Ali Khavarinejad ◽  
...  

2011 ◽  
Vol 236-238 ◽  
pp. 87-90
Author(s):  
Li Ying Guo

Ionic liquid, 1-(2-hydroxylethyl)-3-ethylene imidazolium chloride ([HeVIM]Cl) was synthesized and its chemical structures was examined by FTIR and 1HNMR. Fir powder was extracted with a mixture of benzene/ethanol or activated with 25% (mass fraction) NaOH under normal temperature and pressure, microwave and high pressure. Dissolution of the pretreated wood powder in [HeVIM]Cl by microwave (90°C, 400w) was studied. The results showed that the ionic liquid [HeVIM]Cl exhibited a good solubility. Wood powder pretreated with 25% NaOH under high pressure had the lowest crystallinity (2.4%) and the highest dissolution rate (21.6%).


2017 ◽  
Vol 62 (2) ◽  
pp. 1389-1392
Author(s):  
J.G. Jang ◽  
J.-O. Lee ◽  
C.K. Lee

AbstractRapid synthesis of gold nanoparticles (AuNPs) by pulsed electrodeposition was investigated in the non-aqueous electrolyte, 1-ethyl-3-methyl-imidazoliumbis(trifluoro-methanesulfonyl)imide ([EMIM]TFSI) with gold trichloride (AuCl3). To aid the dissolution of AuCl3, 1-ethyl-3-methyl-imidazolium chloride ([EMIM]Cl) was used as a supporting electrolyte in [EMIM]TFSI. Cyclic voltammetry experiments revealed a cathodic reaction corresponding to the reduction of gold at −0.4 V vs. Pt-QRE. To confirm the electrodeposition process, potentiostatic electrodeposition of gold in the non-aqueous electrolyte was conducted at −0.4 V for 1 h at room temperature. To synthesize AuNPs, pulsed electrodeposition was conducted with controlled duty factor, pulse duration, and overpotential. The composition, particle-size distribution, and morphology of the AuNPs were confirmed by field-emission scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The electrodeposited AuNPs were uniformly distributed on the platinum electrode surface without any impurities arising from the non-aqueous electrolyte. The size distribution of AuNPs could be also controlled by the electrodeposition conditions.


Sign in / Sign up

Export Citation Format

Share Document