Evolution of the Structure and Grain Boundary Ensemble of Nickel during Diffusion Annealing under Conditions a Segregating Impurity (Silver) on Grain Boundaries

Author(s):  
E. V. Naydenkin ◽  
I. P. Mishin
Author(s):  
E.V. Naydenkin ◽  
◽  
I.P. Mishin ◽  

Investigations of the effect of an impurity (silver) segregating along the grain boundaries of nickel on the evolution of the structure and grain-boundary ensemble under conditions of diffusion annealing at a temperature of 823 K for 6 hours have been carried out. It is shown that, under these conditions, the development of a diffusion-induced recrystallization (DIR) process is observed in the Ni(Ag) system, in contrast to the Ni(Cu) system, in which the process of diffusion-induced grain boundary migration (DIGM) was observed. The estimates made have shown that a possible reason for the fact that diffusion-induced migration of grain boundaries practically does not occur in the Ni(Ag) system can be significantly lower than in the Ni(Cu) system the value of osmotic pressure as the driving force for the DIGM process.


Author(s):  
J. W. Matthews ◽  
W. M. Stobbs

Many high-angle grain boundaries in cubic crystals are thought to be either coincidence boundaries (1) or coincidence boundaries to which grain boundary dislocations have been added (1,2). Calculations of the arrangement of atoms inside coincidence boundaries suggest that the coincidence lattice will usually not be continuous across a coincidence boundary (3). There will usually be a rigid displacement of the lattice on one side of the boundary relative to that on the other. This displacement gives rise to a stacking fault in the coincidence lattice.Recently, Pond (4) and Smith (5) have measured the lattice displacement at coincidence boundaries in aluminum. We have developed (6) an alternative to the measuring technique used by them, and have used it to find two of the three components of the displacement at {112} lateral twin boundaries in gold. This paper describes our method and presents a brief account of the results we have obtained.


Author(s):  
C. W. Price

Little evidence exists on the interaction of individual dislocations with recrystallized grain boundaries, primarily because of the severely overlapping contrast of the high dislocation density usually present during recrystallization. Interesting evidence of such interaction, Fig. 1, was discovered during examination of some old work on the hot deformation of Al-4.64 Cu. The specimen was deformed in a programmable thermomechanical instrument at 527 C and a strain rate of 25 cm/cm/s to a strain of 0.7. Static recrystallization occurred during a post anneal of 23 s also at 527 C. The figure shows evidence of dissociation of a subboundary at an intersection with a recrystallized high-angle grain boundary. At least one set of dislocations appears to be out of contrast in Fig. 1, and a grainboundary precipitate also is visible. Unfortunately, only subgrain sizes were of interest at the time the micrograph was recorded, and no attempt was made to analyze the dislocation structure.


Author(s):  
D. B. Williams ◽  
A. D. Romig

The segregation of solute or imparity elements to grain boundaries can occur by three well-defined processes. The first is Gibbsian segregation in which an element of minimal matrix solubility confines itself to a monolayer at the grain boundary. Classical examples include Bi in Cu and S or P in Fe. The second process involves the depletion of excess matrix solute by volume diffusion to the boundary. In the boundary, the solute atoms diffuse rapidly to precipitates, causing them to grow by the ‘collector-plate mechanism.’ Such grain boundary diffusion is thought to initiate “Diffusion-Induced Grain Boundary Migration,” (DIGM). This process has been proposed as the origin of eutectoid transformations or discontinuous grain boundary reactions. The third segregation process is non-equilibrium segregation which result in a solute build-up around the boundary because of solute-vacancy interactions.All of these segregation phenomena usually occur on a sub-micron scale and are often affected by the nature of the grain boundary (misorientation, defect structure, boundary plane).


Author(s):  
C.L. Briant

Grain boundary segregation is the process by which solute elements in a material diffuse to the grain boundaries, become trapped there, and increase their local concentration at the boundary over that in the bulk. As a result of this process this local concentration of the segregant at the grain boundary can be many orders of magnitude greater than the bulk concentration of the segregant. The importance of this problem lies in the fact that grain boundary segregation can affect many material properties such as fracture, corrosion, and grain growth.One of the best ways to study grain boundary segregation is with Auger electron spectroscopy. This spectroscopy is an extremely surface sensitive technique. When it is used to study grain boundary segregation the sample must first be fractured intergranularly in the high vacuum spectrometer. This fracture surface is then the one that is analyzed. The development of scanning Auger spectrometers have allowed researchers to first image the fracture surface that is created and then to perform analyses on individual grain boundaries.


Author(s):  
K.J. Ihn ◽  
R. Pindak ◽  
J. A. N. Zasadzinski

A new liquid crystal (called the smectic-A* phase) that combines cholesteric twist and smectic layering was a surprise as smectic phases preclude twist distortions. However, the twist grain boundary (TGB) model of Renn and Lubensky predicted a defect-mediated smectic phase that incorporates cholesteric twist by a lattice of screw dislocations. The TGB model for the liquid crystal analog of the Abrikosov phase of superconductors consists of regularly spaced grain boundaries of screw dislocations, parallel to each other within the grain boundary, but rotated by a fixed angle with respect to adjacent grain boundaries. The dislocations divide the layers into blocks which rotate by a discrete amount, Δθ, given by the ratio of the layer spacing, d, to the distance between grain boundaries, lb; Δθ ≈ d/lb (Fig. 1).


Author(s):  
R. W. Fonda ◽  
D. E. Luzzi

The properties of polycrystalline materials are strongly dependant upon the strength of internal boundaries. Segregation of solute to the grain boundaries can adversely affect this strength. In copper alloys, segregation of either bismuth or antimony to the grain boundary will embrittle the alloy by facilitating intergranular fracture. Very small quantities of bismuth in copper have long been known to cause severe grain boundary embrittlement of the alloy. The effect of antimony is much less pronounced and is observed primarily at lower temperatures. Even though moderate amounts of antimony are fully soluble in copper, concentrations down to 0.14% can cause grain boundary embrittlement.


Author(s):  
K. Vasudevan ◽  
H. P. Kao ◽  
C. R. Brooks ◽  
E. E. Stansbury

The Ni4Mo alloy has a short-range ordered fee structure (α) above 868°C, but transforms below this temperature to an ordered bet structure (β) by rearrangement of atoms on the fee lattice. The disordered α, retained by rapid cooling, can be ordered by appropriate aging below 868°C. Initially, very fine β domains in six different but crystallographically related variants form and grow in size on further aging. However, in the temperature range 600-775°C, a coarsening reaction begins at the former α grain boundaries and the alloy also coarsens by this mechanism. The purpose of this paper is to report on TEM observations showing the characteristics of this grain boundary reaction.


Author(s):  
R.A. Herring ◽  
M. Griffiths ◽  
M.H Loretto ◽  
R.E. Smallman

Because Zr is used in the nuclear industry to sheath fuel and as structural component material within the reactor core, it is important to understand Zr's point defect properties. In the present work point defect-impurity interaction has been assessed by measuring the influence of grain boundaries on the width of the zone denuded of dislocation loops in a series of irradiated Zr alloys. Electropolished Zr and its alloys have been irradiated using an AEI EM7 HVEM at 1 MeV, ∼675 K and ∼10-6 torr vacuum pressure. During some HVEM irradiations it has been seen that there is a difference in the loop nucleation and growth behaviour adjacent to the grain boundary as compared with the mid-grain region. The width of the region influenced by the presence of the grain boundary should be a function of the irradiation temperature, dose rate, solute concentration and crystallographic orientation.


Author(s):  
Fuming Chu ◽  
D. P. Pope ◽  
D. S. Zhou ◽  
T. E. Mitchell

A C15 Laves phase, HfV2+Nb, shows promising mechanical properties and here we describe the structure of its grain boundaries. The C15 Laves phase has a fcc lattice with a=7.4Å. An alloy of composition Hf14V64Nb22 (including a C15 matrix and a second phase of V-rich bcc solution) was made by arc-melting. The alloy was homogenized at 1200°C for 120h. Preliminary study concentrated on Σ3{<110>/70.53°} grain boundaries in the C15 phase using Philips 400T and CM 30 microscopes.The most-commonly observed morphology of Σ3{<110>/70.53°} grain boundaries in the C15 phase is a faceted boundary. A bright field image (BFI) of the faceted boundary and the corresponding diffraction patterns with the grain boundary edge-on are shown in Fig. 1(a). From the diffraction patterns using a <110> zone axis for both grains, it is obvious that this is a Σ3{<110>/70.53°} grain boundary. Crystallographic analysis shows that the Σ3{<110>/70.53°} grain boundaries selectively facet with the following relationships between the two grains: {111}1//{111}2, {112}1//{112}2, {111}1//{115}2, and {001}1//{221}2.


Sign in / Sign up

Export Citation Format

Share Document