scholarly journals The Origin of Element Abundance Variations in Solar Energetic Particles

Solar Physics ◽  
2016 ◽  
Vol 291 (7) ◽  
pp. 2099-2115 ◽  
Author(s):  
Donald V. Reames
2021 ◽  
Vol 217 (6) ◽  
Author(s):  
Donald V. Reames

AbstractSixty years ago the first observation was published showing solar energetic particles (SEPs) with a sampling of chemical elements with atomic numbers $6 \leq Z \leq 18$ 6 ≤ Z ≤ 18 above 40 MeV amu−1. Thus began study of the direct products of dynamic physics in the solar corona. As we have progressed from 4-min sounding-rocket samples to continuous satellite coverage of SEP events, we have extended the observations to the unusual distribution of element abundances throughout the periodic table. Small “impulsive” SEP events from islands of magnetic reconnection on open magnetic-field lines in solar jets generate huge enhancements in abundances of 3He and of the heaviest elements, enhancements increasing as a power of the ion mass-to-charge ratio as ($A$ A /$Q$ Q )3.6, on average. Solar flares involve the same physics but there the SEPs are trapped on closed loops, expending their energy as heat and light. The larger, energetic “gradual” SEP events are accelerated at shock waves driven by fast, wide coronal mass ejections (CMEs). However, these shocks can also reaccelerate ions from pools of residual suprathermal impulsive ions, and CMEs from jets can also drive fast shocks, complicating the picture. The underlying element abundances in SEP events represent the solar corona, which differs from corresponding abundances in the photosphere as a function of the first ionization potential (FIP) of the elements, distinguishing low-FIP (<10 eV) ions from high-FIP neutral atoms as they expand through the chromosphere. Differences in FIP patterns of SEPs and the solar wind may distinguish closed- and open-field regions of formation at the base of the corona. Dependence of SEP acceleration upon $A$ A /$Q$ Q allows best-fit estimation of ion $Q$ Q -values and hence of the source plasma temperature of ∼1 – 3 MK, derived from abundances, which correlates with recent measures of temperatures using extreme ultraviolet emission from jets. Thus, element abundances in SEPs have become a powerful tool to study the underlying solar corona and to probe physical processes of broad astrophysical significance, from the “FIP effect” to magnetic reconnection and shock acceleration. New questions arise, however, about the theoretical basis of correlations of energy-spectral indices with power-laws of abundances, about the coexistence of separate resonant and non-resonant mechanisms for enhancements of 3He and of heavy elements, about occasional events with unusual suppression of He and about the overall paucity of C in FIP comparisons.


Solar Physics ◽  
2021 ◽  
Vol 296 (7) ◽  
Author(s):  
E. Lavasa ◽  
G. Giannopoulos ◽  
A. Papaioannou ◽  
A. Anastasiadis ◽  
I. A. Daglis ◽  
...  

2001 ◽  
Vol 558 (1) ◽  
pp. L59-L63 ◽  
Author(s):  
A. J. Tylka ◽  
C. M. S. Cohen ◽  
W. F. Dietrich ◽  
C. G. Maclennan ◽  
R. E. McGuire ◽  
...  

2003 ◽  
Vol 591 (1) ◽  
pp. 461-485 ◽  
Author(s):  
C. K. Ng ◽  
D. V. Reames ◽  
A. J. Tylka

2013 ◽  
Author(s):  
R. A. Mewaldt ◽  
C. M. S. Cohen ◽  
G. M. Mason ◽  
T. T. von Rosenvinge ◽  
R. A. Leske ◽  
...  

2008 ◽  
Vol 486 (2) ◽  
pp. 589-596 ◽  
Author(s):  
K.-L. Klein ◽  
S. Krucker ◽  
G. Lointier ◽  
A. Kerdraon

2003 ◽  
Vol 21 (6) ◽  
pp. 1217-1228 ◽  
Author(s):  
R. B. McKibben ◽  
J. J. Connell ◽  
C. Lopate ◽  
M. Zhang ◽  
J. D. Anglin ◽  
...  

Abstract. In 2000–2001 Ulysses passed from the south to the north polar regions of the Sun in the inner heliosphere, providing a snapshot of the latitudinal structure of cosmic ray modulation and solar energetic particle populations during a period near solar maximum.  Observations from the COSPIN suite of energetic charged particle telescopes show that latitude variations in the cosmic ray intensity in the inner heliosphere are nearly non-existent near solar maximum, whereas small but clear latitude gradients were observed during the similar phase of Ulysses’ orbit near the 1994–95 solar minimum. At proton energies above ~10 MeV and extending up to >70 MeV, the intensities are often dominated by Solar Energetic Particles (SEPs) accelerated near the Sun in association with intense solar flares and large Coronal Mass Ejections (CMEs). At lower energies the particle intensities are almost constantly enhanced above background, most likely as a result of a mix of SEPs and particles accelerated by interplanetary shocks. Simultaneous high-latitude Ulysses and near-Earth observations show that most events that produce large flux increases near Earth also produce flux increases at Ulysses, even at the highest latitudes attained. Particle anisotropies during particle onsets at Ulysses are typically directed outwards from the Sun, suggesting either acceleration extending to high latitudes or efficient cross-field propagation somewhere inside the orbit of Ulysses. Both cosmic ray and SEP observations are consistent with highly efficient transport of energetic charged particles between the equatorial and polar regions and across the mean interplanetary magnetic fields in the inner heliosphere.Key words. Interplanetary physics (cosmic rays) – Solar physics, astrophysics and astronomy (energetic particles; flares and mass ejections)


Sign in / Sign up

Export Citation Format

Share Document