Dynamics of the Earth’s Particle Radiation Environment

2009 ◽  
Vol 147 (3-4) ◽  
pp. 187-231 ◽  
Author(s):  
Rami Vainio ◽  
Laurent Desorgher ◽  
Daniel Heynderickx ◽  
Marisa Storini ◽  
Erwin Flückiger ◽  
...  
2016 ◽  
Vol 34 (1) ◽  
pp. 75-84 ◽  
Author(s):  
V. Pierrard ◽  
G. Lopez Rosson

Abstract. With the energetic particle telescope (EPT) performing with direct electron and proton discrimination on board the ESA satellite PROBA-V, we analyze the high-resolution measurements of the charged particle radiation environment at an altitude of 820 km for the year 2015. On 17 March 2015, a big geomagnetic storm event injected unusual fluxes up to low radial distances in the radiation belts. EPT electron measurements show a deep dropout at L > 4 starting during the main phase of the storm, associated to the penetration of high energy fluxes at L < 2 completely filling the slot region. After 10 days, the formation of a new slot around L = 2.8 for electrons of 500–600 keV separates the outer belt from the belt extending at other longitudes than the South Atlantic Anomaly. Two other major events appeared in January and June 2015, again with injections of electrons in the inner belt, contrary to what was observed in 2013 and 2014. These observations open many perspectives to better understand the source and loss mechanisms, and particularly concerning the formation of three belts.


2021 ◽  
Vol 7 (3) ◽  
pp. 3-11
Author(s):  
Lu Li ◽  
Yu Qing-Long ◽  
Zhou Ping ◽  
Zhang Xin ◽  
Zhang Xian-Guo ◽  
...  

Since the moon’s revolution cycle is exactly the same as its rotation cycle, we can only see the moon always facing Earth in the same direction. Based on the clean particle radiation environment of the moon, a neutral atomic telemetry base station could be established on the lunar surface facing Earth to realize long-term continuous geomagnetic activity monitoring. Using the 20°×20° field of view, the 0.5°×0.5° angle resolution, and the ~0.17 cm²sr geometric factor, a two-dimensional ENA imager is being designed. The magnetospheric ring current simulation at a 4–20 keV energy channel for a medium geomagnetic storm (Kp=5) shows the following: 1) at ~60 Rᴇ (Rᴇ is the Earth radius), the imager can collect 10⁴ ENA events for 3 min to meet the statistical requirements for 2D coded imaging data inversion, so as to meet requirements for the analysis of the substorm ring current evolution process of magnetic storms above medium; 2) the ENA radiation loss puzzles in the magnetopause and magnetotail plasma sheet regions have been deduced and revealed using the 2-D ENA emission model. High spatial-temporal resolution ENA imaging monitoring of these two important regions will provide the measurement basis for the solar wind energy input process and generation mechanism; 3) the average sampling interval of ENA particle events is about 16 ms at the moon’s orbit; the spectral time difference for the set energy range is on the order of minutes, which can provide location information to track the trigger of geomagnetic storm particle events.


Icarus ◽  
2012 ◽  
Vol 218 (1) ◽  
pp. 723-734 ◽  
Author(s):  
S. McKenna-Lawlor ◽  
P. Gonçalves ◽  
A. Keating ◽  
B. Morgado ◽  
D. Heynderickx ◽  
...  

2020 ◽  
Author(s):  
Nathan Schwadron ◽  

&lt;p&gt;NASA&amp;#8217;s Parker Solar Probe (PSP) mission recently plunged through the inner heliosphere to perihelia at ~24 million km (~35 solar radii), much closer to the Sun than any prior human made object. Onboard PSP, the Integrated Science Investigation of the Sun (IS&amp;#664;IS) instrument suite made groundbreaking measurements of solar energetic particles (SEPs). Here we discuss the near-Sun energetic particle radiation environment over PSP&amp;#8217;s first two orbits, which reveal where and how energetic particles are energized and transported. We find a great variety of energetic particle events accelerated both locally and remotely. These include co-rotating interaction regions (CIRs), &amp;#8220;impulsive&amp;#8221; SEP events driven by acceleration near the Sun, and events related to Coronal Mass Ejections (CMEs). These IS&amp;#664;IS observations made so close to the Sun provide critical information for investigating the near-Sun transport and energization of solar energetic particles that was difficult to resolve from prior observations. We discuss the physics of particle acceleration and transport in the context of various theories and models that have been developed over the past decades. This study marks a major milestone with humanity&amp;#8217;s reconnaissance of the near-Sun environment and provides the first direct observations of the energetic particle radiation environment in the region just above the corona.&lt;/p&gt;


2018 ◽  
Vol 45 (11) ◽  
pp. 5305-5311 ◽  
Author(s):  
B. Ehresmann ◽  
D. M. Hassler ◽  
C. Zeitlin ◽  
J. Guo ◽  
R. F. Wimmer‐Schweingruber ◽  
...  

2021 ◽  
Author(s):  
Patrícia Gonçalves ◽  
Luisa Arruda ◽  
Marco Pinto

&lt;p&gt;The characterisation of the Martian radiation environment is essential to understand if the planet can sustain life and ultimately if its human exploration is feasible. The major components of the radiation environment in the Mars orbit, are Galactic Cosmic Rays (GCRs) and Solar Energetic Particle (SEP) events. Since Mars has a negligible magnetic field and a much thinner atmosphere compared to the Earth&amp;#8217;s, its surface is exposed to GCR and eventual SEP events, as well as to secondary particles produced in the atmosphere and in the shallow layers of the planet. The Curiosity rover that has been exploring the surface of Mars since August 2012, carries in its Mars Science Laboratory (MSL), the Radiation Assessment Detector (RAD) which measures high-energy radiation, such as protons, energetic ions of various elements, neutrons, and gamma rays. That includes not only direct radiation from space, but also secondary radiation produced by the interaction of space radiation with the atmosphere and surface rocks and soil.&lt;/p&gt; &lt;p&gt;&lt;br /&gt;The detailed Martian Energetic Radiation Environment Model (dMEREM) is a GEometry ANd Tracking (GEANT4) based model developed for ESA which enables to predict the radiation environment expected at different locations on the Martian orbit, atmosphere and surface, as a function of epoch, latitude and longitude, taking into account the specific atmospheric and soil composition. dMEREM can be interfaced to different Primary Particle Models, such as the ISO-15390 and the Badhwar - O'Neill (BON) 2014 or 2020 Galactic Cosmic Ray Flux Models, or the National Aeronautics and Space Administration (NASA) Emission of Solar Protons (ESP) model for solar energetic proton fluences. dMEREM is interfaced with the European Mars Climate Database from where it retrieves information on the atmosphere composition and density at specific locations and solar longitudes and Gamma Ray Spectrometer data aboard Mars Odyssey, for the description of Mars soil composition, although soil compositions for specific locations, including those locally sampled by Martian rovers can also be defined by the user. dMEREM provides the kinetic energy and directional spectra of all particle types produced in the interactions of energetic particles with the Martian Atmosphere and Soil.&lt;/p&gt; &lt;p&gt;The dMEREM validation results using differential proton fluxes stopping in the RAD sensor head as measured by MSL/RAD in Gale crater from November 15, 2015 to January 15, 2016 and in the begin of September 2017 is presented. Although the RAD only measures a limited field-of-view in zenith angle of the Martian Particle Radiation Field, the good agreement between the RAD data and the dMEREM predictions for protons within the RAD field of-view, are used as the basis for the use of dMEREM in the assessment of the expected ionizing radiation field on the surface of Mars for particles coming from all directions, including albedo particles. This assessment is also used to make predictions of dosimetric quantities, such as Ambient Dose Equivalent and Effective Dose, relevant for Human Space Flight, for the considered data periods. &amp;#160;&lt;/p&gt;


2021 ◽  
Author(s):  
Mohamed Nedal ◽  
Kamen Kozarev ◽  
Rositsa Miteva

&lt;p&gt;In this work, we present a full characterization of over 50 historical Coronal Mass Ejection (CME)-driven compressive waves in the low solar corona, related to solar energetic particle events near Earth, using the Solar Particle Radiation Environment Analysis and Forecasting - Acceleration and Scattering Transport (SPREAdFAST) framework. SPREAdFAST is a physics-based, operational heliospheric solar energetic particle (SEP) forecasting system, which incorporates a chain of data-driven analytic and numerical models for estimating: a) coronal magnetic field from Potential Field Source Surface (PFSS) and Magnetohydrodynamics (MHD); b) dynamics of large-scale coronal (CME-driven) shock waves; c) energetic particle acceleration; d) scatter-based, time-dependent SEP propagation in the heliosphere to specific time-dependent positions. SPREAdFAST allows for producing predictions of SEP fluxes at multiple locations in the inner heliosphere, by modeling their acceleration at CMEs near the Sun, and their subsequent interplanetary transport. We used sequences of base-difference images obtained from the AIA instrument on board the SDO satellite, with 24-second cadence. We calculated time-dependent speeds in both the radial and lateral (parallel to the solar limb) directions, mean intensities and thicknesses of the fronts, and major and minor axes. This is essential for characterizing the SEP spectra near the Sun. The kinematics measurements were used to generate time-dependent 3D geometric models of the wave fronts and time-dependent plasma diagnostics using MHD and DEM model results.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


Space Weather ◽  
2018 ◽  
Vol 16 (3) ◽  
pp. 289-303 ◽  
Author(s):  
N. A. Schwadron ◽  
F. Rahmanifard ◽  
J. Wilson ◽  
A. P. Jordan ◽  
H. E. Spence ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Man Hua ◽  
Wen Li ◽  
Binbin Ni ◽  
Qianli Ma ◽  
Alex Green ◽  
...  

Abstract Very-Low-Frequency (VLF) transmitters operate worldwide mostly at frequencies of 10–30 kilohertz for submarine communications. While it has been of intense scientific interest and practical importance to understand whether VLF transmitters can affect the natural environment of charged energetic particles, for decades there remained little direct observational evidence that revealed the effects of these VLF transmitters in geospace. Here we report a radially bifurcated electron belt formation at energies of tens of kiloelectron volts (keV) at altitudes of ~0.8–1.5 Earth radii on timescales over 10 days. Using Fokker-Planck diffusion simulations, we provide quantitative evidence that VLF transmitter emissions that leak from the Earth-ionosphere waveguide are primarily responsible for bifurcating the energetic electron belt, which typically exhibits a single-peak radial structure in near-Earth space. Since energetic electrons pose a potential danger to satellite operations, our findings demonstrate the feasibility of mitigation of natural particle radiation environment.


Sign in / Sign up

Export Citation Format

Share Document