Empirical study on application of machine learning techniques for resource allocation in health care using KPI

2018 ◽  
Vol 76 (4) ◽  
pp. 2266-2274
Author(s):  
S. Skylakha ◽  
P. Sakthivel ◽  
K. S. Arunselvan
Author(s):  
Sherri Rose

Abstract The field of health services research is broad and seeks to answer questions about the health care system. It is inherently interdisciplinary, and epidemiologists have made crucial contributions. Parametric regression techniques remain standard practice in health services research with machine learning techniques currently having low penetrance in comparison. However, studies in several prominent areas, including health care spending, outcomes and quality, have begun deploying machine learning tools for these applications. Nevertheless, major advances in epidemiological methods are also as yet underleveraged in health services research. This article summarizes the current state of machine learning in key areas of health services research, and discusses important future directions at the intersection of machine learning and epidemiological methods for health services research.


Machine learning has become one of the top most emerging technologies in this era of digital revolution. The machine learning algorithms are being used in various fields and applications such as image recognition, speech recognition, classification, prediction, medical diagnosis etc. In medical domain, machine learning techniques have been successfully implemented to improve the accuracy of medical diagnosis and also to improve the efficiency and quality of health care. In this paper, we have analyzed the existing health care practice system and have proposed how machine learning techniques can be used for differential diagnosis of Tuberculosis and Pneumonia which are often misdiagnosed due to similar symptoms at early stages.


Sign in / Sign up

Export Citation Format

Share Document