scholarly journals Bootstrapping of integer concepts: the stronger deviant-interpretation challenge (and how to solve it)

Author(s):  
Markus Pantsar

AbstractBeck (Cognition 158:110–121, 2017) presents an outline of the procedure of bootstrapping of integer concepts, with the purpose of explicating the account of Carey (The Origin of Concepts, 2009). According to that theory, integer concepts are acquired through a process of inductive and analogous reasoning based on the object tracking system (OTS), which allows individuating objects in a parallel fashion. Discussing the bootstrapping theory, Beck dismisses what he calls the "deviant-interpretation challenge"—the possibility that the bootstrapped integer sequence does not follow a linear progression after some point—as being general to any account of inductive learning. While the account of Carey and Beck focuses on the OTS, in this paper I want to reconsider the importance of another empirically well-established cognitive core system for treating numerosities, namely the approximate number system (ANS). Since the ANS-based account offers a potential alternative for integer concept acquisition, I show that it provides a good reason to revisit the deviant-interpretation challenge. Finally, I will present a hybrid OTS-ANS model as the foundation of integer concept acquisition and the framework of enculturation as a solution to the challenge.

2014 ◽  
Vol 984-985 ◽  
pp. 1357-1363
Author(s):  
M. Vinothini ◽  
M. Manikandan

During real time there are problems in transmitting video directly to the client. One of the main problems is, intermediate intelligent proxy can easily hack the data as the transmitter fails to address authentication, and fails to provide security guarantees. Hence we provide steganography and cryptography mechanisms like secure-code, IP address and checksum for authentication and AES algorithm with secret key for security. Although the hacker hacks the video during transmission, he cannot view the information. Based on IP address and secure-code, the authenticated user only can get connected to the transmitter and view the information. For further improvement in security, the video is converted into frames and these frames are split into groups and separate shared key is applied to each group of frames for encryption and decryption. This secured communication process is applied in image processing modules like face detection, edge detection and color object detection. To reduce the computation time multi-core CPU processing is utilized. Using multi-core, the tasks are processed in parallel fashion.


Author(s):  
Koleen McCrink ◽  
Wesley Birdsall

Numerical Abilities and Arithmetic in Infancy. In this chapter, infants’ capacity to represent and manipulate numerical amounts via a precise system for small numbers (the object-tracking system) and an imprecise system for large numbers (the Approximate Number System, or ANS) is detailed. Of particular interest is the presence of an untrained ability to calculate arithmetic outcomes as a result of mathematical operations. The evidence for addition, subtraction, ordering, multiplication, and division in infancy is reviewed and links to other domains such as statistical learning are explored.


2015 ◽  
Vol 781 ◽  
pp. 591-594
Author(s):  
Adrian Wattananupong ◽  
Pichitpong Soontornpipit

This research aim to design and develop a system that improve the patient waiting time. Appointment system is designed to be the core system that uses to inform the patient’s appointment information. Patient appointment is informed by email and SMS alert to their cell phone. The system provides the appointment time and average waiting time before their queue. When the patients get their treatment, the system tracks down the timestamp for each process from the start till the end to calculate average waiting time. The time results are used for both other patients to determine their waiting time and for hospital management team to verify the quality system.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244578
Author(s):  
Gisella Decarli ◽  
Emanuela Paris ◽  
Chiara Tencati ◽  
Chiara Nardelli ◽  
Massimo Vescovi ◽  
...  

It is believed that the approximate estimation of large sets and the exact quantification of small sets (subitizing) are supported by two different systems, the Approximate Number System (ANS) and Object Tracking System (OTS), respectively. It is a current matter of debate whether they are both impaired in developmental dyscalculia (DD), a specific learning disability in symbolic number processing and calculation. Here we tackled this question by asking 32 DD children and 32 controls to perform a series of tasks on visually presented sets, including exact enumeration of small sets as well as comparison of large, uncountable sets. In children with DD, we found poor sensitivity in processing large numerosities, but we failed to find impairments in the exact enumeration of sets within the subitizing range. We also observed deficits in visual short-term memory skills in children with dyscalculia that, however, did not account for their low ANS acuity. Taken together, these results point to a dissociation between quantification skills in dyscalculia, they highlight a link between DD and low ANS acuity and provide support for the notion that DD is a multifaceted disability that covers multiple cognitive skills.


Author(s):  
Johannes Wagemann ◽  
Jonas Raggatz

AbstractCounting objects, especially moving ones, is an important capacity that has been intensively explored in experimental psychology and related disciplines. The common approach is to trace the three counting principles (estimating, subitizing, serial counting) back to functional constructs like the Approximate Number System and the Object Tracking System. While usually attempts are made to explain these competing models by computational processes at the neural level, their first-person dimensions have been hardly investigated so far. However, explanatory gaps in both psychological and philosophical terms may suggest a methodologically complementary approach that systematically incorporates introspective data. For example, the mental-action debate raises the question of whether mental activity plays only a marginal role in otherwise automatic cognitive processes or if it can be developed in such a way that it can count as genuine mental action. To address this question not only theoretically, we conducted an exploratory study with a moving-dots task and analyze the self-report data qualitatively and quantitatively on different levels. Building on this, a multi-layered, consciousness-immanent model of counting is presented, which integrates the various counting principles and concretizes mental agency as developing from pre-reflective to increasingly conscious mental activity.


Author(s):  
Stefan Buijsman

AbstractIn recent years philosophers have used results from cognitive science to formulate epistemologies of arithmetic (e.g. Giaquinto in J Philos 98(1):5–18, 2001). Such epistemologies have, however, been criticised, e.g. by Azzouni (Talking about nothing: numbers, hallucinations and fictions, Oxford University Press, 2010), for interpreting the capacities found by cognitive science in an overly numerical way. I offer an alternative framework for the way these psychological processes can be combined, forming the basis for an epistemology for arithmetic. The resulting framework avoids assigning numerical content to the Approximate Number System and Object Tracking System, two systems that have so far been the basis of epistemologies of arithmetic informed by cognitive science. The resulting account is, however, only a framework for an epistemology: in the final part of the paper I argue that it is compatible with both platonist and nominalist views of numbers by fitting it into an epistemology for ante rem structuralism and one for fictionalism. Unsurprisingly, cognitive science does not settle the debate between these positions in the philosophy of mathematics, but I it can be used to refine existing epistemologies and restrict our focus to the capacities that cognitive science has found to underly our mathematical knowledge.


2019 ◽  
Vol 42 ◽  
Author(s):  
Guido Gainotti

Abstract The target article carefully describes the memory system, centered on the temporal lobe that builds specific memory traces. It does not, however, mention the laterality effects that exist within this system. This commentary briefly surveys evidence showing that clear asymmetries exist within the temporal lobe structures subserving the core system and that the right temporal structures mainly underpin face familiarity feelings.


Author(s):  
Paul A. Wetzel ◽  
Gretchen Krueger-Anderson ◽  
Christine Poprik ◽  
Peter Bascom

Sign in / Sign up

Export Citation Format

Share Document