Study of the involvement of osmotic adjustment and H+-ATPase activity in the resistance of Catharanthus roseus suspension cells to salt stress

2005 ◽  
Vol 80 (3) ◽  
pp. 287-294 ◽  
Author(s):  
Salem Elkahoui ◽  
Micaela Carvajal ◽  
Rachid Ghrir ◽  
F�rid Limam
2007 ◽  
Vol 30 (3) ◽  
pp. 287-292 ◽  
Author(s):  
Cheruth Abdul Jaleel ◽  
Ragupathi Gopi ◽  
Ashok Kishorekumar ◽  
Paramasivam Manivannan ◽  
Beemarao Sankar ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
J. S. Bayuelo-Jiménez ◽  
N. Jasso-Plata ◽  
I. Ochoa

This paper reports the changes on growth, photosynthesis, water relations, soluble carbohydrate, and ion accumulation, for two salt-tolerant and two salt-sensitivePhaseolusspecies grown under increasing salinity (0, 60 and 90 mM NaCl). After 20 days exposure to salt, biomass was reduced in all species to a similar extent (about 56%), with the effect of salinity on relative growth rate (RGR) confined largely to the first week. RGR of salt-tolerant species was reduced by salinity due to leaf area ratio (LAR) reduction rather than a decline in photosynthetic capacity, whereas unit leaf rate and LAR were the key factors in determining RGR on salt-sensitive species. Photosynthetic rate and stomatal conductance decreased gradually with salinity, showing significant reductions only in salt-sensitive species at the highest salt level. There was little difference between species in the effect of salinity on water relations, as indicated by their positive turgor. Osmotic adjustment occurred in all species and depended on higher K+, Na+, and Cl−accumulation. Despite some changes in soluble carbohydrate accumulation induced by salt stress, no consistent contributions in osmotic adjustment could be found in this study. Therefore, we suggest that tolerance to salt stress is largely unrelated to carbohydrate accumulation inPhaseolusspecies.


1986 ◽  
Vol 13 (5) ◽  
pp. 659 ◽  
Author(s):  
SP Robinson ◽  
GP Jones

Glycinebetaine was determined in leaves and in isolated chloroplasts of spinach (Spinacia oleracea) by nuclear magnetic resonance spectroscopy. Some leakage of glycinebetaine from the chloroplasts occurred during the isolation so the concentration in chloroplasts in vivo could be up to 1.5 times higher than that measured in isolated chloroplasts. It was demonstrated that any contamination of the chloroplast preparations by glycinebetaine originating from other cellular compartments or from broken chloroplasts would have amounted to less than 10% of the measured values. Leaf osmotic potential of salt-stressed plants was -2.09 MPa compared to -0.91 MPa in non-stressed controls. This was accompanied by a sixfold increase in glycinebetaine content in the leaf but the levels of choline and proline were not increased. In chloroplasts isolated from control leaves the calculated glycinebetaine concentration was 26 mM which was 10-fold higher than the concentration in the leaf as a whole but only contributed 7% of the osmotic potential of the chloroplast. Chloroplasts from salt-stressed plants contained up to 300 mM glycinebetaine which was 20 times the concentration in the leaf as a whole. The glycinebetaine concentration in chloroplasts from salt-stressed leaves was equivalent to an osmotic potential of -0.75 MPa and this contributed 36% of the osmotic potential of the chloroplast and 64% of the decrease in osmotic potential induced by salt stress. At least 30-40% of the total leaf glycinebetaine was localized in the chloroplast. The results demonstrate that glycinebetaine accumulates in chloroplasts to provide osmotic adjustment during salt stress and provide support for the hypothesis that glycinebetaine is a compatible cytoplasmic solute which may be preferentially located in the cytoplasm of cells.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 569
Author(s):  
Annick Bertrand ◽  
Craig Gatzke ◽  
Marie Bipfubusa ◽  
Vicky Lévesque ◽  
Francois P. Chalifour ◽  
...  

Alfalfa and its rhizobial symbiont are sensitive to salinity. We compared the physiological responses of alfalfa populations inoculated with a salt-tolerant rhizobium strain, exposed to five NaCl concentrations (0, 20, 40, 80, or 160 mM NaCl). Two initial cultivars, Halo (H-TS0) and Bridgeview (B-TS0), and two populations obtained after three cycles of recurrent selection for salt tolerance (H-TS3 and B-TS3) were compared. Biomass, relative water content, carbohydrates, and amino acids concentrations in leaves and nodules were measured. The higher yield of TS3-populations than initial cultivars under salt stress showed the effectiveness of our selection method to improve salinity tolerance. Higher relative root water content in TS3 populations suggests that root osmotic adjustment is one of the mechanisms of salt tolerance. Higher concentrations of sucrose, pinitol, and amino acid in leaves and nodules under salt stress contributed to the osmotic adjustment in alfalfa. Cultivars differed in their response to recurrent selection: under a 160 mM NaCl-stress, aromatic amino acids and branched-chain amino acids (BCAAs) increased in nodules of B-ST3 as compared with B-TS0, while these accumulations were not observed in H-TS3. BCAAs are known to control bacteroid development and their accumulation under severe stress could have contributed to the high nodulation of B-TS3.


Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1039 ◽  
Author(s):  
Yan-Nong Cui ◽  
Fang-Zhen Wang ◽  
Cheng-Hang Yang ◽  
Jian-Zhen Yuan ◽  
Huan Guo ◽  
...  

The xerophyte Pugionium cornutum adapts to salt stress by accumulating inorganic ions (e.g., Cl−) for osmotic adjustment and enhancing the activity of antioxidant enzymes, but the associated molecular basis remains unclear. In this study, we first found that P. cornutum could also maintain cell membrane stability due to its prominent ROS-scavenging ability and exhibits efficient carbon assimilation capacity under salt stress. Then, the candidate genes associated with the important physiological traits of the salt tolerance of P. cornutum were identified through transcriptomic analysis. The results showed that after 50 mM NaCl treatment for 6 or 24 h, multiple genes encoding proteins facilitating Cl− accumulation and NO3− homeostasis, as well as the transport of other major inorganic osmoticums, were significantly upregulated in roots and shoots, which should be favorable for enhancing osmotic adjustment capacity and maintaining the uptake and transport of nutrient elements; a large number of genes related to ROS-scavenging pathways were also significantly upregulated, which might be beneficial for mitigating salt-induced oxidative damage to the cells. Meanwhile, many genes encoding components of the photosynthetic electron transport pathway and carbon fixation enzymes were significantly upregulated in shoots, possibly resulting in high carbon assimilation efficiency in P. cornutum. Additionally, numerous salt-inducible transcription factor genes that probably regulate the abovementioned processes were found. This work lays a preliminary foundation for clarifying the molecular mechanism underlying the adaptation of xerophytes to harsh environments.


1980 ◽  
Vol 19 (3) ◽  
pp. 488-489 ◽  
Author(s):  
A.Ian Scott ◽  
Hajime Mizukami ◽  
Toshifumi Hirata ◽  
Siu-Leung Lee

2007 ◽  
Vol 9 (2) ◽  
pp. 125-132 ◽  
Author(s):  
Grégory Montiel ◽  
Christian Breton ◽  
Martine Thiersault ◽  
Vincent Burlat ◽  
Christian Jay-Allemand ◽  
...  

2007 ◽  
Vol 27 (22) ◽  
pp. 7781-7790 ◽  
Author(s):  
Giorgia Batelli ◽  
Paul E. Verslues ◽  
Fernanda Agius ◽  
Quansheng Qiu ◽  
Hiroaki Fujii ◽  
...  

ABSTRACT The salt overly sensitive (SOS) pathway is critical for plant salt stress tolerance and has a key role in regulating ion transport under salt stress. To further investigate salt tolerance factors regulated by the SOS pathway, we expressed an N-terminal fusion of the improved tandem affinity purification tag to SOS2 (NTAP-SOS2) in sos2-2 mutant plants. Expression of NTAP-SOS2 rescued the salt tolerance defect of sos2-2 plants, indicating that the fusion protein was functional in vivo. Tandem affinity purification of NTAP-SOS2-containing protein complexes and subsequent liquid chromatography-tandem mass spectrometry analysis indicated that subunits A, B, C, E, and G of the peripheral cytoplasmic domain of the vacuolar H+-ATPase (V-ATPase) were present in a SOS2-containing protein complex. Parallel purification of samples from control and salt-stressed NTAP-SOS2/sos2-2 plants demonstrated that each of these V-ATPase subunits was more abundant in NTAP-SOS2 complexes isolated from salt-stressed plants, suggesting that the interaction may be enhanced by salt stress. Yeast two-hybrid analysis showed that SOS2 interacted directly with V-ATPase regulatory subunits B1 and B2. The importance of the SOS2 interaction with the V-ATPase was shown at the cellular level by reduced H+ transport activity of tonoplast vesicles isolated from sos2-2 cells relative to vesicles from wild-type cells. In addition, seedlings of the det3 mutant, which has reduced V-ATPase activity, were found to be severely salt sensitive. Our results suggest that regulation of V-ATPase activity is an additional key function of SOS2 in coordinating changes in ion transport during salt stress and in promoting salt tolerance.


Sign in / Sign up

Export Citation Format

Share Document