scholarly journals Experimental and Numerical Study of Micropitting Initiation in Real Rough Surfaces in a Micro-elastohydrodynamic Lubrication Regime

2018 ◽  
Vol 66 (4) ◽  
Author(s):  
M. F. AL-Mayali ◽  
S. Hutt ◽  
K. J. Sharif ◽  
A. Clarke ◽  
H. P. Evans
Author(s):  
Mingfei Ma ◽  
Wen Wang ◽  
Wenxun Jiang

As a common phenomenon in elastohydrodynamic lubrication, cavitation has an effect on the completeness of the oil film in the contact area. Many studies have therefore been conducted on cavitation. Experimental researches on cavitation usually rely on optical interference observation, which offers a limited resolution and observation range. In this paper, an infrared thermal camera is used to observe the cavity bubbles on a ball-on-disc setup under sliding/rolling conditions. The results show that the cavity length increases with an increases of the entrainment speed and the viscosity of the lubricants. These observations are explained by a numerical model based on Elrod's algorithm. Effects of entrainment speed and lubricant viscosity on the breakup of cavitation bubbles and the cavitation states are investigated. Both the simulation and experimental results show that a negative pressure area is present behind the Hertzian contact area. The ambient pressure plays a role in maintaining cavitation state 1. The cavitation pressure is close to the vacuum pressure when the entrainment speed is low and to the ambient pressure instead when the entrainment speed is high.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Neelesh Deolalikar ◽  
Farshid Sadeghi ◽  
Sean Marble

Highly loaded ball and rolling element bearings are often required to operate in the mixed elastohydrodynamic lubrication regime in which surface asperity contact occurs simultaneously during the lubrication process. Predicting performance (i.e., pressure, temperature) of components operating in this regime is important as the high asperity contact pressures can significantly reduce the fatigue life of the interacting components. In this study, a deterministic mixed lubrication model was developed to determine the pressure and temperature of mixed lubricated circular and elliptic contacts for measured and simulated surfaces operating under pure rolling and rolling/sliding condition. In this model, we simultaneously solve for lubricant and asperity contact pressures. The model allows investigation of the condition and transition from boundary to full-film lubrication. The variation of contact area and load ratios is examined for various velocities and slide-to-roll ratios. The mixed lubricated model is also used to predict the transient flash temperatures occurring in contacts due to asperity contact interactions and friction. In order to significantly reduce the computational efforts associated with surface deformation and temperature calculation, the fast Fourier transform algorithm is implemented.


1982 ◽  
Vol 96 (1) ◽  
pp. 1-8 ◽  
Author(s):  
S. De Silva ◽  
J.C. Anderson ◽  
J.A. Leather

2019 ◽  
Vol 71 (9) ◽  
pp. 1099-1107
Author(s):  
Guo Xiang Guo Xiang ◽  
Yanfeng Han ◽  
Renxiang Chen ◽  
Jiaxu Wang Jiaxu Wang ◽  
Ni Xiaokang

Purpose This paper aims to present a numerical model to investigate the mixed lubrication performances of journal-thrust coupled bearings (or coupled bearings). Design/methodology/approach The coupled hydrodynamic effect (or coupled effect) between the journal and the thrust bearing is considered by ensuring the continuity of the hydrodynamic pressure and the flow field at the common boundary. The mixed lubrication performances of the coupled bearing are comparatively studied for the cases of considering and not considering coupled effect. Findings The simulated results show that the hydrodynamic pressure distributions for both the journal and thrust bearing are modified due to the coupled effect. The decreased load capacity of the journal bearing and the increased load capacity of the thrust bearing can be observed when the coupled effect is considered. And the coupled effect can facilitate in reducing the asperity contact load for both the journal and thrust bearing. Additionally, the interaction between the mixed lubrication behaviors, especially for the friction coefficient, of the journal and the thrust bearing is significant in the elastohydrodynamic lubrication regime, while it becomes weak in the mixed lubrication regime. Originality/value The developed model can reveal the mutual effects of the mixed lubrication behavior between the journal and the thrust bearing.


2020 ◽  
Vol 68 (2) ◽  
Author(s):  
A. Ziegltrum ◽  
E. Maier ◽  
T. Lohner ◽  
K. Stahl

Author(s):  
Xianghui Meng ◽  
Youbai Xie

The cylinder liner-piston system of internal combustion engines is one of the key friction pairs running at the most rigor working conditions. Under the influence of elastohydrodynamic lubrication and contact between the piston skirt and the liner, the dynamic process of piston is a nonlinear and stiff problem difficult to be analyzed accurately and easily. To reach a stable and rapid convergence in analysis, the MEBDF method and the multigrid method are used to solve the piston-skirt elastohydrodynamic lubrication and contact problem. Firstly the solving process of the piston dynamics is analyzed based on the MEBDF method. Then the residual equations for the elastohydrodynamic lubrication pressure are built based on the multigrid method. And the solving method of the nonlinear residual equations is presented based on the quasi Newton-Raphson method. Finally the numerical simulation program is developed based on the MEBDF method and the multigrid method. The elastohydrodynamic lubrication and contact problem of the piston skirt-liner system is simply analyzed based on the simulation. The study in this paper can provide an effective method for tribological analysis and optimization of piston–liner system in the future.


Sign in / Sign up

Export Citation Format

Share Document