cavitation pressure
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 0)

Lubricants ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 111
Author(s):  
Wanjun Xu ◽  
Shanhui Zhao ◽  
Yaoyao Xu ◽  
Kang Li

Cavitation has a potential effect on the performance of full circle journal bearings. This paper studied the effects of cavitation on steadily loaded journal bearings, with the purpose of analyzing the necessity of adopting a mass-conserving model for ordinary journal bearings. The Christopherson’s method and Elrod cavitation algorithm were implemented to represent the non-mass-conserving Reynolds model and the mass-conserving Jakobsson-Floberg-Olsson (JFO) theory, respectively. The difference in the oil film reformation boundaries predicted by the two methods was focused on. The typical performance parameters including oil film pressure, load-carrying capacity, attitude angle, friction force, and leakage were comprehensively compared. The results show that the load-carrying capacity is improved by the decrease in cavitation pressure, and the effect is significant in lightly loaded cavitated bearings. In non-cavitated cases and the cavitated cases with intermediate and heavy loads, the difference between the Reynolds model and the JFO theory can be effectively ignored, but the accuracy of the leakage predicted using the Reynolds model should be carefully evaluated.


Author(s):  
Mingfei Ma ◽  
Wen Wang ◽  
Wenxun Jiang

As a common phenomenon in elastohydrodynamic lubrication, cavitation has an effect on the completeness of the oil film in the contact area. Many studies have therefore been conducted on cavitation. Experimental researches on cavitation usually rely on optical interference observation, which offers a limited resolution and observation range. In this paper, an infrared thermal camera is used to observe the cavity bubbles on a ball-on-disc setup under sliding/rolling conditions. The results show that the cavity length increases with an increases of the entrainment speed and the viscosity of the lubricants. These observations are explained by a numerical model based on Elrod's algorithm. Effects of entrainment speed and lubricant viscosity on the breakup of cavitation bubbles and the cavitation states are investigated. Both the simulation and experimental results show that a negative pressure area is present behind the Hertzian contact area. The ambient pressure plays a role in maintaining cavitation state 1. The cavitation pressure is close to the vacuum pressure when the entrainment speed is low and to the ambient pressure instead when the entrainment speed is high.


2021 ◽  
Vol 9 (10) ◽  
pp. 1138
Author(s):  
Jing Li ◽  
Chunbao Liu ◽  
Xiaoying Li

This paper examines the effects on a Clark-y three-dimensional hydrofoil of wavy leading-edge protuberances in a quantitative and qualitative way. The simulation is accompanied by a hybrid RANS-LES model in conjunction with Zwart-Gerber–Belamri model. Detailed discussions of the stable no-cavitating, unsteady cavitating flow fields and the control mechanics are involved. The force characteristics, complicated flow behaviors, cavitation–streamwise vortex interactions, and the cavitating flow instability are all presented. The results demonstrate that protuberances acting as vortex generators produce a continuous influx of boundary-layer vorticity, significantly enhancing the momentum transfer of streamwise vortices and therefore improving the hydrodynamics of the hydrofoil. Significant interactions are described, including the encouragement impact of cavitation evolution on the fragmentation of streamwise vorticities as well as the compartmentation effect of streamwise vorticities binding the cavitation inception inside the troughs. The variations in cavitation pressure are mainly due to the acceleration in steam volume. In summary, it is vital for new hydrofoils or propeller designs to understand in depth the effects of leading-edge protuberances on flow control.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6554
Author(s):  
Uffe Sjølund Freiberg ◽  
Torben O. Andersen ◽  
Jens Ring Nielsen ◽  
Henrik C. Pedersen

In marine applications, a cyclic varying pitch (CVP) propeller is a propeller in which the propeller blade can be cyclic-pitched. This cyclic pitching of the propeller blades is used to adapt to the local flow conditions in the non-uniform wake field that the propeller operates in, behind the ship hull. This has the potential to improve the performance of the propulsion system relative to a propeller which has fixed pitch for each revolution. The potential performance improvements include increasing the propulsion efficiency and reducing the cavitation, pressure pulses, vibrations and noise problems. However, the CVP propeller is not on the market today, and several challenges have to be addressed before the CVP propeller may be realized. One of these challenges is how to design the individual cyclic pitch mechanism for the propeller. However, before the cyclic pitch mechanism can be designed, it is necessary to know the requirements for it, such as the required pitching power and torque. The focus of the current paper is therefore to present a model for the propeller, by which it is possible to determine the loads acting on the CVP propeller blades during the cyclic pitching, and hence the actuator force/torque and power requirements. To illustrate the usefulness of the model, an example is presented, in which the loads on a CVP propeller are determined, together with the requirements for the individual cyclic pitch mechanism. The efficiency results presented are, however, not representative of the efficiency improvement that may be obtained, as neither the propeller nor the pitch trajectory has been optimised. The results do, however, serve to show the benefit and validity of the model.


2021 ◽  
Vol 5 (3) ◽  
pp. 18-27
Author(s):  
Vladimir Leonid Lanin

Innovative approaches in ultrasonic assistant soldering consist consists of increasing the activity of cavitation and accelerating diffusion processes at the interface between the solder and the soldering material. Besides that, it improves the effectiveness of cavitation processes in melts by saturating gas cavities with diamete rs that are smaller than the resonant sizes of cavitation germs. Gas saturation of liquids and melts raises level of cavitation pressure by 20 25%25%, that intensifies US processing of cleaning, soldering and metallization. Modelling diffusion process showed that the US activation increased the concentration of diffusing elements of Zn and Al in the interface depth by 15 20% on average, and the combined activation by the US and electric field increased it by 30 45%. Furthermore, as the energy quantity adsorbed by melt increases, increased amplitude and frequency of US vibrations induces concentration rise. The heat energy was also boosted by combining the activation of the melt–soldered material system with US vibrations energy and high current pulses. This allows for a faster increase in soldering temperature, as well as improved solder wettability.


2020 ◽  
Vol 6 (3) ◽  
pp. 539-542
Author(s):  
Benedikt George ◽  
Markus Lehner ◽  
Michael Fink ◽  
Stefan J. Rupitsch ◽  
Helmut Ermert ◽  
...  

AbstractEmploying sonosensitive nanoparticles as carriers of active pharmaceutical ingredients emerges in ultrasonic Drug Delivery. Drug release can be initiated by focused ultrasound via the effect of inertial cavitation in certain target areas of particle loaded tissue. For stimulating inertial cavitation, a specific peak rarefaction pressure threshold must be exceeded. This pressure threshold has to be determined in order to estimate the risk of tissue damage during the drug release procedure. Therefore, this study provides a method to reliably verify the cavitation pressure threshold of sonosensitive and biocompatible nanoparticles.


Lubricants ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 82
Author(s):  
Michael Müller ◽  
Lukas Stahl ◽  
Georg-Peter Ostermeyer

Modeling tribological contacts is commonly based on the Reynolds equation. This study discusses the validity of conventional, averaged Reynolds simulations for systems including starvation regimes. Two fundamental assumptions that are used as common practice in many elasto-hydrodynamic (EHD) calculations, are debated. First, the use of a cavitation pressure (in most cases assumed to be zero) independent of the microscopic roughness. Second, the application of a shear flow factor, which is determined on a microscopic scale with a fully filled gap. The validity of these two assumptions is analyzed with simulations on the microscopic scale. For this purpose, simulations of partially filled contacts are carried out using the partially filled gaps model developed by the authors. The topographies, the filling level and the fluid distribution were varied. The simulations comply with established models for the fully filled state and show a distinct behavior for partial filling and different fluid distributions. Neglecting the contribution to pressure buildup and shear flow of partially filled domains is a valid method in most cases. However, as this study shows, near the fully filled regime, the domains should be handled with care.


2020 ◽  
Vol 72 (10) ◽  
pp. 1267-1275
Author(s):  
Zhentao Li ◽  
Xiaoli Yin ◽  
Jixiang Yue ◽  
Fuyu Liu ◽  
Muming Hao ◽  
...  

Purpose The purpose of this paper is to study the effects of operating conditions including process coefficient, lubricant viscosity and cavitation pressure on the cavitation of spiral groove liquid-film seal (SG-LFS). Design/methodology/approach A mathematical model of SG-LFS is established based on the JFO boundary and a relative density is introduced. The universal governing equation after a coordinate transformation is discretized by the FVM method and solved by the Gauss-Seidel relaxation scheme. Findings The results indicate that the two-dimensional size of cavitation and cavitation degree are affected significantly by the process coefficient and lubricant viscosity but the effect of cavitation pressure can be ignored. Originality/value The effect mechanisms of operating conditions on the cavitation of SG-LFS are studied by the JFO boundary and cavitation degree characterized by a relative density. The results presented are helpful to perfect and deeply understand the cavitation mechanism of liquid-film seal. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2020-0083/


2020 ◽  
Author(s):  
Demin Liu ◽  
Yongzhi Zhao ◽  
Weilin Xu

Abstract Pump turbine operating conditions are complex, mainly including turbine mode and pump mode. Pump turbines have various instability problems during operation, such as S-shaped, pump hump, pressure pulsation and cavitation. PIV (Particle Image Velocimetry) is a very effective test technique for the internal flow field observation of pump turbines. In this paper, the internal flow field of pump hump, cavitation, pressure pulsation and four quadrants of the pump turbine are tested by PIV technology. The experimental observations show that the internal flow on those unstable working conditions of the pump turbine is extremely complicated. Those conditions which the vortex separation is serious and the flow angle is changed is far away the best efficiency working condition. Since the operating condition deviates from the optimal operating condition, the inflow Angle is changed and the inflow Angle is far away from the optimal inflow Angle.And the vortex induces and develops strongly by PIV test. The flow phenomenon are demonstrated at each operating points by PIV test.


Author(s):  
D N Liu ◽  
Z J Yan ◽  
X L Yan ◽  
X H Zhu ◽  
D Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document