Effects of a long-acting trace mineral rumen bolus supplement on growth performance, metabolic profiles, and trace mineral status of growing camels

2016 ◽  
Vol 48 (4) ◽  
pp. 763-768 ◽  
Author(s):  
Ibrahim A. Alhidary ◽  
Mutassim M. Abdelrahman ◽  
Raafat M. Harron
2016 ◽  
Vol 94 (suppl_1) ◽  
pp. 46-46
Author(s):  
D. M. Price ◽  
K. M. Havill ◽  
S. R. Hayter ◽  
L. J. Sims ◽  
R. West ◽  
...  

Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2226
Author(s):  
Taoqi Shao ◽  
Rebecca S. Brattain ◽  
Daniel W. Shike

The objective of this study was to investigate effects of maternal supplementation with an injectable trace mineral (Cu, Mn, Zn, and Se) on subsequent steer performance during the finishing phase. Seventy-six Angus cross steers (initial body weight 249 ± 41.5 kg) from dams administered either an injectable trace mineral (TM; Multimin 90) or sterilized physiological saline (CON) during prepartum stage were used. Individual feed intake during the finishing phase were recorded with GrowSafe feed bunks. Blood and liver biopsy samples were collected to evaluate trace mineral status. Steers were slaughtered at 413 ± 26 days of age and carcass data were obtained at a commercial abattoir. Growth performance or mineral status of the steers during the finishing phase was not affected (p ≥ 0.14) by maternal treatments. Carcass characteristics were not different (p ≥ 0.18), except steers from TM dams had greater (p = 0.05) percentage of carcasses graded as Choice or greater. In conclusion, maternal supplementation of an injectable trace mineral increased the percentage of carcasses graded as Choice or greater, other than that, maternal supplementation had limited influence on finishing phase growth performance, trace mineral status, or carcass characteristics of the subsequent steer progeny.


2017 ◽  
Vol 95 (9) ◽  
pp. 4139
Author(s):  
S. J. Hartman ◽  
O. N. Genther-Schroeder ◽  
S. L. Hansen

2019 ◽  
Vol 32 (1) ◽  
pp. 103-107 ◽  
Author(s):  
Scott L. Radke ◽  
Steve M. Ensley ◽  
Stephanie L. Hansen

Trace mineral status is a critical component of bovine health. Impairment of physiological processes, caused by trace mineral toxicities or deficiencies, can be potential underlying factors of disease. Historically, the status of critical trace minerals, such as copper, manganese, selenium, and zinc, has been evaluated through the analysis of hepatic tissue. We assessed variation of these 4 elements between homogenized liver and samples of 0.02 g, 0.1 g, 0.5 g, and 1.0 g. We also evaluated concentration differences in copper, manganese, selenium, and zinc among samples stored under different durations. No differences in concentrations of copper, manganese, selenium, or zinc were observed among samples stored frozen for 3, 7, and 14 d post-collection. Statistical differences in concentrations of selenium and zinc were observed between 0.02-g biopsy samples and larger samples. Moisture content differed between 0.02-g biopsies and larger samples and over time. Results indicate that as little as 0.02 g of hepatic tissue dried to ~0.006 g is reliable for interpretation of trace mineral status and determination of toxicities and deficiencies in cattle pertaining to copper, manganese, selenium, and zinc, despite the small differences observed.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 71-71
Author(s):  
Nicole T Briggs ◽  
Bayissa Hatew ◽  
Michael A Steele

Abstract Inorganic sources of trace minerals are commonly supplemented in dairy cow diets; however, there has been an increase in the supplementation of minerals complexed with organic compounds. These organic trace minerals are thought to have greater bioavailability which may enhance rumen fermentation and absorption. The objective of this study was to assess the effects of dietary concentration and source of supplemental trace minerals on serum trace mineral status and rumen fermentation. Six lactating Holstein cows were used in a 6 x 6 Latin square design with a 23-day adaptation and 5-day experimental period. Cows were fed the same basal diet daily except for the difference in source [organic (ORG) versus inorganic (INO)] and concentration (50%, 100%, and 200% based on NRC recommendations) of trace mineral supplemented. During the experimental period feed intake and blood were collected daily. Rumen fluid was collected on the final two days of the experimental period. Data was analyzed with PROC MIXED in SAS 9.4. Dry matter intake (18.1 ± 0.70 kg), serum mineral concentrations (Cu, Mn, Se, and Zn), and rumen pH (6.5 ± 0.64) did not differ among the treatments. However, serum concentration of Co was higher in 200% ORG compared to 50% and 100% INO and 50% ORG. Ruminal concentration of acetate was higher in 50% and 100% ORG compared to 200% ORG. Butyrate ruminal concentration was higher at 50% ORG compared to 200% ORG. Ruminal propionate concentration was higher in 50% INO and 50% ORG compared to 100% INO and 200% ORG. These findings demonstrate serum trace mineral status and ruminal pH are not tightly controlled by the source of trace minerals when supplemented at 50%, 100% and 200% of the NRC recommendations, however rumen fermentation may be affected by the dietary concentration of trace minerals in the diet.


Sign in / Sign up

Export Citation Format

Share Document