Chemical composition, fermentative characteristics, and in situ ruminal degradability of elephant grass silage containing Parkia platycephala pod meal and urea

2020 ◽  
Vol 52 (6) ◽  
pp. 3481-3492
Author(s):  
Luana Andrade Costa ◽  
Marcos Jácome de Araújo ◽  
Ricardo Loiola Edvan ◽  
Leilson Rocha Bezerra ◽  
Alex Rodrigues de Sousa ◽  
...  
2020 ◽  
Vol 42 ◽  
pp. e48272
Author(s):  
Maikon Figueredo Lemos ◽  
Alexandro Pereira Andrade ◽  
Pedro Henrique Ferreira da Silva ◽  
Camila Oliveira Santos ◽  
Caio Felipe Barros Souza ◽  
...  

The aim of this study was to evaluate nutritional value, fermentation losses, and aerobic stability of elephant grass silage (Pennisetum purpureum Schum.) treated with exogenous fibrolytic enzymes. The experiment was conducted in a completely randomized design with four replicates (experimental silos) and five levels of fibrolytic enzymes (0, 1.5, 3.0, 4.5 and 6.0%). For this, the elephant grass was ensiled at 70 days of age in plastic buckets with 20L capacity. Silos were opened 60 days after sealing. Analyses were made for chemical composition, in vitro dry matter digestibility (IVDMD), effluent losses (EL), gas losses (GL) and dry matter recovery (DMR), as well as the aerobic stability of the silage. Data were analyzed with PROC REG of SAS® University, at 5% probability. There was an increase in IVDMD content (p < 0.0001) and reduction in NDF and ADF contents (p < 0.0001) according to enzyme levels. These results were related to the increase in the degradation of fiber fractions. There were higher EL (p = 0.0062) as a function of enzyme levels and aerobic deterioration after silo opening, at all levels tested. Thus, it can be concluded that the exogenous fibrolytic enzymes change the chemical composition of elephant grass silage, and increase its digestibility and nutritional value. Moreover, when used alone as an additive, fibrolytic enzymes are not able to recover all dry matter of this silage (with effluent and gas losses), and are not able to maintain aerobic stability in the first hours after opening the silos.


2000 ◽  
Vol 2000 ◽  
pp. 56-56
Author(s):  
J.W. Cone ◽  
A.H. van Gelder ◽  
A.A. Kamman ◽  
V.A. Hindle

The amount of rumen escape protein is commonly determined with the nylon bag technique. However, there is also an in vitro technique described using a protease of Streptomyces griseus (Aufrère et al., 1991; Cone et al., 1996), allowing systematical analysis of protein quality in a large number of samples. The aim of this study was to identify the influences of growing conditions on content of rumen escape protein in grass and grass silage and to investigate the relationships between rumen escape protein determined in vitro and in situ and chemical composition.


Author(s):  
Binuomote R. T. ◽  
Bamigboye F. O. ◽  
Amuda A.J. ◽  
Ayebogan G. M.

In this study, elephant grass ((Pennisetum purpureum) was ensiled with varying levels of poultry dropping and cassava peel (CSP). Silage characteristics and chemical composition of the silage mixtures were determined in the laboratory while preferences of West African Dwarf (WAD) goats for the mixtures were assessed using eighteen (18) WAD goats. The treatments were: T1: P. purpureum (60%), poultry dropping (40%), dry cassava peel (0%); T2: P. purpureum (60%), poultry dropping (30%), dry cassava peel (10%); T3: P. pupureum (60%), poultry dropping (20%), dry cassava peel (20%); T4: P. purpureum (60%), poultry dropping (10%), dry cassava peel (30%); T5: P. purpureum (60%), poultry dropping (0%), dry cassava peel (40%) and T6: P. purpureum (100%). All the mixtures formed good silage, except the silage with the highest proportion of poultry dropping (T1) and acidity (pH) ranged from 6.75 to 3.80 (T1 and T5 respectively) while colour varied from pale to light green with dark brown and white speckles as proportion of cassava peel in the silage mixture increased. All silages had firm texture with pleasant and slightly alcoholic smell. Dry matter (DM) content of silage increased as proportion of cassava peel in the mixture increased while crude protein (CP) and (NDF) reduced. DM, CP and CF varied from 27.00 to 54.00%, 8.46 to 10.72% and 28.52 to 60.52 %, respectively. The preference by goats was 11.22, 20.44, 20.71, 21.78, 22.56 and 32.28% for T5, T4, T6, T3, T2 and T1 respectively. These results revealed that the silage properties, chemical composition and acceptability of elephant grass silage by WAD goat were enhanced by the addition of cassava peel and poultry dropping to elephant grass


2004 ◽  
Vol 84 (4) ◽  
pp. 737-740 ◽  
Author(s):  
A. F. Mustafa ◽  
F. Hassanat ◽  
P. Seguin

The objective of this study was to determine the chemical composition and in situ ruminal degradability of normal and brown midrib (bmr) forage pearl millet [Pennisetum glaucum (L.) R. Br.] grown in southwestern Québec conditions. Forage was harvested twice during the season. Relative to normal genotype, bmr millet contained less (P < 0.05) neutral detergent fiber (NDF) and acid detergent lignin and more (P < 0.05) crude protein (CP). Fiber fractions were similar for the two harvests. However, CP content was higher (P < 0.05) in the first than the second harvest. In situ ruminal degradabilities of DM, CP and NDF were all higher (P < 0.05) for bmr than normal forage millet and were not affected by harvest. Key words: Forage quality, pearl millet, ruminal degradability, protein fractions, brown midrib


2020 ◽  
Vol 33 (4) ◽  
pp. 264-272
Author(s):  
Cláudia M Serra-Ferreira ◽  
Agatha G Farias-Souza ◽  
Rita C Almeida-Mendonça ◽  
Melany Simões-Souza ◽  
Wagner R L Lopes-Filho ◽  
...  

Background: Tropical grasses, such as elephant grass, have high moisture content during its ideal phenological state for silage. High moisture content hinders proper preservation and reduces the nutritive value of silage due to secondary fermentation and production of effluents. Adding feed materials with high dry matter content, such as murumuru (Astrocaryum murumuru) meal, is a potential alternative to improve silage yield. Objective: To determine the effects of including murumuru meal (0, 7, 14, 21, and 28%) on the fermentative characteristics, microbiological activity, aerobic stability, and chemical composition of elephant grass silages. Methods: A completely randomized design with five treatments and five replicates was used. Elephant grass was collected at 60 d of age, minced, and homogenized with murumuru meal. The mass was placed in experimental 15-L silos. The silos were collected and analyzed 45 d later. Results: Effluent production decreased (p<0.05) as the proportions of murumuru meal in silage increased. A quadratic effect (p<0.05) was observed on dry matter recovery. An increase (p<0.05) was observed in dry matter content, a decrease (p<0.05) in the neutral detergent fiber content, and an increase (p<0.05) in the non-fibrous carbohydrate content with the inclusion of murumuru meal. Conclusions: Addition of murumuru meal improves chemical composition and does not affect the fermentative characteristics of elephant grass silage, while it reduces effluent losses. Nevertheless, the inclusion of murumuru meal in the elephant grass silage decreased the time of aerobic stability.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Oswaldo Rosendo ◽  
Luis Freitez ◽  
Rafael López

In in vitro true dry matter degradability (IVTDMD), in situ dry matter degradability, and neutral detergent fiber degradability, both in vitro (IVNDFD) and in situ (ISNDFD) techniques were used with crossbred goats to determine dry matter and neutral detergent fiber (NDF) ruminal degradability in eight forages and four industrial byproducts. Total digestible nutrients (TDN) content obtained with five different summative models (summative equations) were studied to compare the precision of estimates. All these models included digestible fractions of crude protein, ether extract, and nonfiber carbohydrates that were calculated from chemical composition, but digestible NDF (dNDF) was obtained from IVNDFD (IVdNDF), ISNDFD (ISdNDF), or by using the Surface Law approach. On the basis of the coefficient of determination (R2) of the simple lineal regression of predicted TDN (y-axes) and observed IVTDMD (x-axes), the precision of models was tested. The predicted TDN by the National Research Council model exclusively based on chemical composition only explains up to 41% of observed IVTDMD values, whereas the model based on IVdNDF had a high precision (96%) to predict TDN from forage and byproducts fiber when used in goats.


2017 ◽  
Vol 38 (2) ◽  
pp. 931 ◽  
Author(s):  
Raimundo Ribeiro Ferreira ◽  
Leilson Rocha Bezerra ◽  
Carlo Aldrovandi Torreão Marques ◽  
Jacira Neves da Costa Torreão ◽  
Ricardo Loiola Edvan ◽  
...  

The objective of this research was to evaluated the inclusion of buriti fruit peel as additive on the fermentation profile, losses, chemical composition and degradability of elephant grass silage. We used a completely randomized design with five levels of buriti fruit peel (0, 50, 100, 200 and 400 g kg-1). The silos were opened after 28 days of storage. In situ degradability monitoring was conducted using a split-plot design in which four animals represented the blocks and silage supplemented with five levels of buriti fruit peel represented the treatments. The use of the additive in elephant silage increased dry matter (DM) (P < 0.001), ether extract (EE) (P < 0.001), ash (P < 0.001), neutral detergent fiber (NDF) (P < 0.001) and acid detergent fiber (ADF) (P= 0.0000). The pH (P= 0.0000), N-NH3 (P = 0.024) and there was a decrease in gas losses (P < 0.001), effluent losses and dry matter recovery (P = 0.218) not were influenced by the addition of buriti fruit peel. The inclusion of buriti fruit peel linearly reduced the ruminal degradability DM of soluble fraction (a) (P < 0.001) and potentially degradable insoluble fraction (b) (P < 0.001). The DM content increase with the addition of the buriti fruit peel to the elephant grass silage promotes improvements in the fermentation process, reduces losses of nutrients and ruminal disappearance of dry matter and does not significantly change the chemical composition with the inclusion of 166.7 g kg-1 of the buriti fruit peel.


2014 ◽  
Vol 86 (1) ◽  
pp. 465-474 ◽  
Author(s):  
DANIELE J. FERREIRA ◽  
ANDERSON M. ZANINE ◽  
ROGÉRIO P. LANA ◽  
MARINALDO D. RIBEIRO ◽  
GUILHERME R. ALVES ◽  
...  

The objective of the present study was to assess the chemical and bromatological composition and in situ degradability of elephant grass silages inoculated with Streptococcus bovis isolated from cattle rumen. A complete randomized design was used with four treatments and six replications: elephant grass silage, elephant grass silage inoculated with 106 CFU/g Streptococcus bovis JB1 strains; elephant grass silage inoculated with 106 CFU/g Streptococcus bovis HC5 strains; elephant grass silage inoculated with 106 CFU/g Enterococcus faecium with six replications each. The pH and ammoniacal nitrogen values were lower (P<0.05) for the silages inoculated with Streptococcus bovis JB1 and HC5, respectively. The silage inoculated with Streptococcus bovis had a higher crude protein content (P<0.05) and there were no differences for the fiber contents in the silage. The (a)soluble fraction degradability, especially in the silages inoculated with Streptococcus bovis JB1 and HC5, had higher values, 30.77 and 29.97%, for dry matter and 31.01 and 36.66% for crude protein, respectively. Inoculation with Streptococcus bovis improved the fermentation profile, protein value and rumen degradability of the nutrients.


2018 ◽  
Vol 40 (1) ◽  
pp. 39946 ◽  
Author(s):  
Bruno Spindola Garcez ◽  
Claudiane Morais dos Santos ◽  
Cicero Nicolini ◽  
Francisco Araújo Machado ◽  
Ernando De Oliveira Macedo ◽  
...  

 The objective of this study was to evaluate in situ ruminal degradability of elephant grass silages with addition of 8, 16 and 24% of faveira pods in experimental silos of 100x50 mm, equipped with bunsen valves. The content of crude protein (cp) and neutral detergent fiber (ndf) were determined on a dry matter basis. To evaluate the in situ degradability of dm, cp and ndf, nylon bags containing 4 g sample were incubated in the rumen of three fistulated cattle for 6, 24 and 72h. The dm and cp content of elephant grass silages increased (p < 0.05) from 8% inclusion associated with a higher concentration of constituents in faveira pods (77.25 and 9.61% dm). The ndf fraction reduced 10.91% (p < 0.05) when adding 24% pods. The potential degradation (pd) of dm and cp increased with inclusion of faveira pods, with 75.97 and 95.21%, respectively, for the level of 24%. There was increased potentially degradable fraction (bp) of ndf by 7.07% with inclusion of 24% faveira pods, as well as a reduced colonization time (lag) from 3.81 to 3.44 hours. The addition of up to 24% faveira pods to elephant grass silages improves rumen microbial degradation, and it is indicated this level of addition to obtain better quality silage. 


2007 ◽  
Vol 87 (4) ◽  
pp. 623-629 ◽  
Author(s):  
A. F. Mustafa ◽  
J. C. F. García ◽  
P. Seguin ◽  
O. Marois-Mainguy

A study was conducted to determine the effects of forage soybean cultivar on chemical composition, ensiling characteristics, and ruminal degradability of silage. Two cultivars of forage soybean (Kodiak and Mammouth) were field-grown, harvested at the R6 stage, and ensiled in mini-silos (n = 3) for 0, 2, 4, 8, 16 and 45 d. Two ruminally fistulated cows were used to determine in situ ruminal nutrient degradabilities of the 45-d silages. Both cultivars went through slow fermentation as indicated by a gradual decline in pH up to day 45 post-ensiling. Lactic acid concentration increased throughout ensiling and was higher for Mammouth than Kodiak except at day 45 post-ensiling. Analysis of the 45-d silages showed that Mammouth contained higher neutral detergent fiber (NDF, 490 vs. 444 g kg-1), acid detergent fiber (371 vs. 353 g kg-1) and acid detergent lignin (81 vs. 64 g kg-1) than Kodiak. However, crude protein (CP) concentration was higher for Kodiak than Mammouth. Mammouth silage had lower buffer soluble protein and higher neutral and acid detergent insoluble protein concentrations than Kodiak silage. Results of the in situ study indicated that Kodiak silage had greater ruminal dry matter (606 vs. 549 g kg-1), CP (828 vs. 752 g kg -1) and NDF (272 vs. 227 g kg-1) degradabilities than Mammouth. It was concluded that chemical composition and ruminal nutrient degradabilities of forage soybean silage were significantly influenced by cultivar. Key words: Soybean [Glycine max (L.) Merill.], silage, ensiling; forage quality, nutrient degradability


Sign in / Sign up

Export Citation Format

Share Document