scholarly journals Fermentation characteristics and nutritional quality of elephant grass silage added the buriti fruit peel

2017 ◽  
Vol 38 (2) ◽  
pp. 931 ◽  
Author(s):  
Raimundo Ribeiro Ferreira ◽  
Leilson Rocha Bezerra ◽  
Carlo Aldrovandi Torreão Marques ◽  
Jacira Neves da Costa Torreão ◽  
Ricardo Loiola Edvan ◽  
...  

The objective of this research was to evaluated the inclusion of buriti fruit peel as additive on the fermentation profile, losses, chemical composition and degradability of elephant grass silage. We used a completely randomized design with five levels of buriti fruit peel (0, 50, 100, 200 and 400 g kg-1). The silos were opened after 28 days of storage. In situ degradability monitoring was conducted using a split-plot design in which four animals represented the blocks and silage supplemented with five levels of buriti fruit peel represented the treatments. The use of the additive in elephant silage increased dry matter (DM) (P < 0.001), ether extract (EE) (P < 0.001), ash (P < 0.001), neutral detergent fiber (NDF) (P < 0.001) and acid detergent fiber (ADF) (P= 0.0000). The pH (P= 0.0000), N-NH3 (P = 0.024) and there was a decrease in gas losses (P < 0.001), effluent losses and dry matter recovery (P = 0.218) not were influenced by the addition of buriti fruit peel. The inclusion of buriti fruit peel linearly reduced the ruminal degradability DM of soluble fraction (a) (P < 0.001) and potentially degradable insoluble fraction (b) (P < 0.001). The DM content increase with the addition of the buriti fruit peel to the elephant grass silage promotes improvements in the fermentation process, reduces losses of nutrients and ruminal disappearance of dry matter and does not significantly change the chemical composition with the inclusion of 166.7 g kg-1 of the buriti fruit peel.

2017 ◽  
Vol 39 (2) ◽  
pp. 123 ◽  
Author(s):  
Lara Maria Santos Brant ◽  
Paulo Roberto Silveira Pimentel ◽  
João Paulo Sampaio Rigueira ◽  
Dorismar David Alves ◽  
Mateus Alves Macedo Carvalho ◽  
...  

The aim of this study was to evaluate the fermentative losses and nutritional value of elephant grass silages with the increasing of inclusion levels of dehydrated banana peel. The experiment was conducted in a completely randomized design, with six treatments and four replications, being the silage exclusively from elephant grass, and five levels of inclusion of banana peel to the elephant grass silage, as the following - 5; 10; 15; 20 and 25%, being added based on natural matter. The addition of the banana peel in the silage reduced linearly (p < 0.05) the pH, the ammoniacal nitrogen and the losses of the fermentative process. In addition, the inclusion of banana peel increased linearly (p < 0.05) the dry matter and non-fibrous carbohydrates. On the other hand, the neutral detergent fiber and the acid detergent fiber were linearly reduced with the inclusion of the banana peel (p < 0.05), but there was no change in the dry matter digestibility in situ. The inclusion of dehydrated banana peel in elephant grass silage reduces the losses of the fermentation process with more consistent results at the 25% inclusion level, however, it reduces the silage nutritional value due to fibrous and protein quality. 


2010 ◽  
Vol 39 (12) ◽  
pp. 2611-2616 ◽  
Author(s):  
Anderson de Moura Zanine ◽  
Edson Mauro Santos ◽  
João Ricardo Rebouças Dórea ◽  
Paulo Alfredo de Santana Dantas ◽  
Thiago Carvalho da Silva ◽  
...  

The objective of this experiment was to evaluate the effects of adding cassava scrapings on gas and effluent losses, dry matter recovery, pH, contents of N-NH3, organic acids and volatile fatty acids and the bromatological composition of elephant grass silages. It was used a randomized complete design, with four levels of cassava scrapings (0, 7, 15 or 30% natural matter) each one with four replications per level. The grass was cut at 50 days of regrowth and ensiled in 15-L silos, equipped with a Bunsen valve to allow gas outflow. The gas losses decreased quadratically with the addition of cassava scrapings, whereas effluent losses decreased linearly. Dry matter recovery increased quadratically with the addition of cassava scrapings. Dry matter (DM) concentration increased but crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose (HEM) decreased linearly with the addition of cassava scrapings. The pH value and lactic acid concentration increased quadratically with the addition of cassava scrapings. Contents of N-NH3 and butyric acid decreased quadratically with the addition of cassava scrapings, whereas acetic acid content decreased linearly. Addition of cassava scrapings reduced gas and effluent losses and improved the fermentation profile of elephant grass silages and the level of 7% already ensures this improvement.


2014 ◽  
Vol 86 (1) ◽  
pp. 465-474 ◽  
Author(s):  
DANIELE J. FERREIRA ◽  
ANDERSON M. ZANINE ◽  
ROGÉRIO P. LANA ◽  
MARINALDO D. RIBEIRO ◽  
GUILHERME R. ALVES ◽  
...  

The objective of the present study was to assess the chemical and bromatological composition and in situ degradability of elephant grass silages inoculated with Streptococcus bovis isolated from cattle rumen. A complete randomized design was used with four treatments and six replications: elephant grass silage, elephant grass silage inoculated with 106 CFU/g Streptococcus bovis JB1 strains; elephant grass silage inoculated with 106 CFU/g Streptococcus bovis HC5 strains; elephant grass silage inoculated with 106 CFU/g Enterococcus faecium with six replications each. The pH and ammoniacal nitrogen values were lower (P<0.05) for the silages inoculated with Streptococcus bovis JB1 and HC5, respectively. The silage inoculated with Streptococcus bovis had a higher crude protein content (P<0.05) and there were no differences for the fiber contents in the silage. The (a)soluble fraction degradability, especially in the silages inoculated with Streptococcus bovis JB1 and HC5, had higher values, 30.77 and 29.97%, for dry matter and 31.01 and 36.66% for crude protein, respectively. Inoculation with Streptococcus bovis improved the fermentation profile, protein value and rumen degradability of the nutrients.


2020 ◽  
Vol 45 (2) ◽  
pp. 352-362
Author(s):  
M. Baba ◽  
A. Nasir ◽  
A. Kabiru ◽  
M. V ◽  
G. A. Umar

The experiment was conducted to determine the effects of three additives (molasses, cracked corn and corn-soybean) and inclusion levels (0, 2.5, 5, 7.5 and 10 %) on nutritive value of elephant grass (Pennistum purpureum) silage. The experimental design was a 3×5 factorial in a completely randomized design with each treatment replicated three times. Samples were obtained from Pasture Museum. Elephant grass stands at late vegetative stage were randomly selected and harvested at 7 cm stubble height. Grass was chopped into 2-3 cm length. Five hundred gram of the sample was weighed in each case; additives were added separately at the designated inclusion levels and mixed thoroughly. Materials were then tightly packed into laboratory silos compressed and sealed tightly and left for a fermentation period of 21 days. The results indicated crude protein (CP) was significantly greater (10.92%) in silage treated with corn-soybean additive compared with other additives. Crude fiber (CF) was observed to be lower in molasses treated elephant grass silage (27.74 %). Acid detergent fiber (ADF) and neutral detergent fiber (NDF) were both lower in molasses treated silage (24.76 and 43.26 % respectively). The CP was observed to increase with increased inclusion level of the additive while CF decreased. Values for digestible dry matter (DDM), dry matter intake (DMI)as a percentage of body weight and relative feed value (RFV) were greater (P<0.05) in molasses treated silage compared to corn and corn-soybean. The DDM, DMI and RFV values were higher (P<0.05) at 7.5 and 10 % inclusion levels. Significant interactions were observed between additives and inclusion levels in most parameters measured. It was concluded that molasses additive could be used in elephant grass silage during ensiling at 7.5-10 % levels of inclusion.


2020 ◽  
Vol 42 ◽  
pp. e47171
Author(s):  
Hugo Vinícius Lelis Silveira ◽  
Thiago Gomes dos Santos Braz ◽  
João Paulo Sampaio Rigueira ◽  
Márcia Vitória Santos ◽  
Jéssica Oliveira Gusmão ◽  
...  

The aim of this study was to evaluate the addition of macauba palm cake (Acrocomia aculeata) on the chemical composition, fermentation and aerobic stability of elephant grass silages (Pennisetum purpureum). The experiment was performed in a completely randomized design with four replicates. The treatments were composed of six levels of macauba palm cake (0, 6, 12, 18, 24, 30%) as additive to elephant grass silage. Dry matter and ethereal extract content of the silage increased linearly with the inclusion of the additive. Addition levels of 15.54% would provide 35% of dry mass, and the limit of 7.00% of ethereal extract in the silage could be obtained with 10.47%. The neutral detergent fiber content reduced linearly from 68.97 to 52.59%, but lignin increased linearly from 6.56 to 7.70%. There was a reduction of 0.17% in the ammoniacal nitrogen content for each 1% of cake. The minimum value of dry matter losses (1.33%) was estimated to the inclusion level of 23.70%. The aerobic stability increased with inclusions between 18 and 24% of cake. The use of levels between 10 and 15% of macauba palm cake are sufficient to optimize dry matter and ethereal extract contents of the silages and to provide a high aerobic stability with minimum losses.


2017 ◽  
Vol 9 (9) ◽  
pp. 36
Author(s):  
Joao P. S. Rigueira ◽  
Odilon G. Pereira ◽  
Karina G. Ribeiro ◽  
Sebastião De C. V. Filho ◽  
Andréia S. Cezário ◽  
...  

The chemical composition, fermentation profile, microbial population and dry matter recovery were evaluated in marandu grass silages containing different levels of Stylo legume cv. Campo Grande treated or not with microbial inoculant. A 4 × 2 factorial arrangement (four levels of Stylo legume, with and without microbial inoculant) was used in a completely randomized design with four replications. The levels of Stylo legume used were 0, 10, 20 and 30% of the weight in the natural matter. The marandu grass was harvested at 70 days of regrowth and the Stylo legume at the pre-flowering stage. It was observed the effect of interaction between levels of Stylo legume and microbial inoculant on dry matter content, effluent losses, dry matter recovery and yeast and molds populations. The dry matter content of the silages with and without inoculant increased (P < 0.05) linearly with the addition of Stylo legume. A linear decreasing effect was observed for neutral detergent fiber contents and a linear crescent effect for the crude protein contents of the silages with addition of Stylo legume. The pH values had a quadratic effect with addition of Stylo legume, with a maximum value of 4.16 in the inclusion of 12.25% of Stylo legume. The LAB population increased linearly with an increase in the levels of Stylo legume. The dry matter recovery increased linearly with the addition of Stylo legume, in the silages without inoculant. It is concluded that the consortium of marandu grass with Stylo legume improves the chemical composition, fermentation profile, and decrease the dry matter losses of the silages, regardless of the use of microbial inoculant.


2021 ◽  
Vol 51 (3) ◽  
pp. 191-198
Author(s):  
Juliana Schuch PITIRINI ◽  
Rosana Ingrid Ribeiro dos SANTOS ◽  
Francy Manoely da Silva LIMA ◽  
Ilano Silva Braga do NASCIMENTO ◽  
Jehmison de Oliveira BARRADAS ◽  
...  

ABSTRACT The use of cassava root silage for animal feeding is a suitable option for farmers who grow cassava as an alternative product and for cattle ranchers who have to deal with high prices of corn. Our objective was to determine the effects of cassava genotypes and the correction of soil acidity on the microbial population, fermentation characteristics, chemical composition, aerobic stability and losses of cassava root silage. We used a 2 × 3 factorial design in completely randomized blocks, with four replications. We evaluated two cassava genotypes (Caeté and Manteiguinha) and three methods of soil acidity correction (lime, gypsum, and lime+gypsum). The roots were harvested 11 months after planting, ensiled in PVC silos, and stored for 45 days. No interaction was observed between genotypes and soil acidity correction for any of the evaluated parameters. The silage of Caeté genotype showed the highest concentration of dry matter (421 g kg-1 fresh matter) and non-fibrous carbohydrates (893 g kg-1 dry matter), and the lowest concentrations of neutral detergent fiber (37.1 g kg-1 dry matter) . No significant differences were observed among treatments for lactic acid bacteria, yeast and mold counts in silages. Both genotypes resulted in silages with an adequate fermentation profile and considerably high aerobic stability, but with high effluent loss. The Caeté genotype showed to be potentially better for silage production due to its higher dry matter recovery. Due to the high level of effluent loss, it is recommended to test the effect of a moisture-absorbing additive during the ensiling process of these cassava roots.


Author(s):  
Maikon Figueredo Lemos ◽  
Alexandre Carneiro Leão de Mello ◽  
Adriana Guim ◽  
Márcio Vieira da Cunha ◽  
Pedro Henrique Ferreira da Silva ◽  
...  

Abstract: The objective of this work was to evaluate the nutritional value of silages from tall-sized and dwarf elephant grass (Pennisetum purpureum) genotypes, intercropped or not with butterfly pea (Clitoria ternatea). The experiment was performed in randomized complete blocks, in a 4x2 factorial arrangement (four genotypes × two cropping systems). The genotypes intercropped or not with butterfly pea were: IRI-381 and Elephant B, tall sized; and Taiwan A-146 2.37 and Mott, dwarf. Forage was harvested 60 days after regrowth. In the silage from Mott grass intercropped with butterfly pea, lower contents of lignin (78.1 g kg-1), neutral detergent fiber (636.0 g kg-1), and neutral detergent insoluble protein (13.15 g kg-1), besides a greater dry matter recovery (873.3 g kg-1), were observed. The silage from Taiwan A-146 2.37 intercropped with the legume showed a greater crude protein content (136.1 g kg-1). In both silages, the ammonia nitrogen contents were quite reduced (26.4 g kg-1). However, greater residual water-soluble carbohydrate contents were observed in the silages from the intercrop (1.85 mg g-1) and from the Mott grass monocrop (1.51 mg g-1). Moreover, there was a lower in vitro dry matter digestibility (676.7 g kg-1) for the silage from the intercrop. Dwarf genotypes increase the nutritional value of elephant grass silage, compared with the tall-sized ones. Intercropping with butterfly pea improves silage fermentation characteristics, despite reducing its digestibility. Therefore, the ensilage of dwarf Mott elephant grass intercropped with butterfly pea shows more promising results.


2015 ◽  
Vol 45 (2) ◽  
pp. 298-303 ◽  
Author(s):  
Ricardo Martins Araujo Pinho ◽  
Edson Mauro Santos ◽  
Juliana Silva de Oliveira ◽  
Higor Fábio Carvalho Bezerra ◽  
Poliane Meire Dias de Freitas ◽  
...  

This study aimed to assess the fermentation profile, losses and chemical composition of the silages of five sorghum cultivars. A completely randomized design with five replicates was used. The experimental treatments were represented by five sorghum cultivars (Sorghum bicolor (L). Moench): 'BRS Ponta Negra' , 'BRS 610', 'BRS 655', 'BRS 800' and 'BRS 810'. There was variation (P<0.05) for the pH in the cultivars studied, with highest result of pH by 'BRS 610'. The average percentages of lactic acid, acetic acid and propionic acid, differed (P<0.05) among the cultivars, ranging from 32.9 to 59.5, 19.8 to 39.8, and 0.0 to 1.3g kg-1, respectively. The dry matter recovery varied among cultivars (P<0.05), allowing the identification of BRS Ponta Negra, and 'BRS 810' silages, as those which recovered the lowest dry matter, with values of 757.1 and 776.1g kg-1, respectively. There were differences (P<0.05) for dry matter, crude protein, ether extract, neutral detergent fiber, non-fibrous carbohydrates and total carbohydrates contents among the cultivars. It was concluded that, despite the morphological and chemical differences among cultivars, the resulting silages had good fermentation profile.


2020 ◽  
Vol 42 ◽  
pp. e48272
Author(s):  
Maikon Figueredo Lemos ◽  
Alexandro Pereira Andrade ◽  
Pedro Henrique Ferreira da Silva ◽  
Camila Oliveira Santos ◽  
Caio Felipe Barros Souza ◽  
...  

The aim of this study was to evaluate nutritional value, fermentation losses, and aerobic stability of elephant grass silage (Pennisetum purpureum Schum.) treated with exogenous fibrolytic enzymes. The experiment was conducted in a completely randomized design with four replicates (experimental silos) and five levels of fibrolytic enzymes (0, 1.5, 3.0, 4.5 and 6.0%). For this, the elephant grass was ensiled at 70 days of age in plastic buckets with 20L capacity. Silos were opened 60 days after sealing. Analyses were made for chemical composition, in vitro dry matter digestibility (IVDMD), effluent losses (EL), gas losses (GL) and dry matter recovery (DMR), as well as the aerobic stability of the silage. Data were analyzed with PROC REG of SAS® University, at 5% probability. There was an increase in IVDMD content (p < 0.0001) and reduction in NDF and ADF contents (p < 0.0001) according to enzyme levels. These results were related to the increase in the degradation of fiber fractions. There were higher EL (p = 0.0062) as a function of enzyme levels and aerobic deterioration after silo opening, at all levels tested. Thus, it can be concluded that the exogenous fibrolytic enzymes change the chemical composition of elephant grass silage, and increase its digestibility and nutritional value. Moreover, when used alone as an additive, fibrolytic enzymes are not able to recover all dry matter of this silage (with effluent and gas losses), and are not able to maintain aerobic stability in the first hours after opening the silos.


Sign in / Sign up

Export Citation Format

Share Document