scholarly journals Ruminal Degradability and Summative Models Evaluation for Total Digestible Nutrients Prediction of Some Forages and Byproducts in Goats

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Oswaldo Rosendo ◽  
Luis Freitez ◽  
Rafael López

In in vitro true dry matter degradability (IVTDMD), in situ dry matter degradability, and neutral detergent fiber degradability, both in vitro (IVNDFD) and in situ (ISNDFD) techniques were used with crossbred goats to determine dry matter and neutral detergent fiber (NDF) ruminal degradability in eight forages and four industrial byproducts. Total digestible nutrients (TDN) content obtained with five different summative models (summative equations) were studied to compare the precision of estimates. All these models included digestible fractions of crude protein, ether extract, and nonfiber carbohydrates that were calculated from chemical composition, but digestible NDF (dNDF) was obtained from IVNDFD (IVdNDF), ISNDFD (ISdNDF), or by using the Surface Law approach. On the basis of the coefficient of determination (R2) of the simple lineal regression of predicted TDN (y-axes) and observed IVTDMD (x-axes), the precision of models was tested. The predicted TDN by the National Research Council model exclusively based on chemical composition only explains up to 41% of observed IVTDMD values, whereas the model based on IVdNDF had a high precision (96%) to predict TDN from forage and byproducts fiber when used in goats.


2007 ◽  
Vol 87 (4) ◽  
pp. 623-629 ◽  
Author(s):  
A. F. Mustafa ◽  
J. C. F. García ◽  
P. Seguin ◽  
O. Marois-Mainguy

A study was conducted to determine the effects of forage soybean cultivar on chemical composition, ensiling characteristics, and ruminal degradability of silage. Two cultivars of forage soybean (Kodiak and Mammouth) were field-grown, harvested at the R6 stage, and ensiled in mini-silos (n = 3) for 0, 2, 4, 8, 16 and 45 d. Two ruminally fistulated cows were used to determine in situ ruminal nutrient degradabilities of the 45-d silages. Both cultivars went through slow fermentation as indicated by a gradual decline in pH up to day 45 post-ensiling. Lactic acid concentration increased throughout ensiling and was higher for Mammouth than Kodiak except at day 45 post-ensiling. Analysis of the 45-d silages showed that Mammouth contained higher neutral detergent fiber (NDF, 490 vs. 444 g kg-1), acid detergent fiber (371 vs. 353 g kg-1) and acid detergent lignin (81 vs. 64 g kg-1) than Kodiak. However, crude protein (CP) concentration was higher for Kodiak than Mammouth. Mammouth silage had lower buffer soluble protein and higher neutral and acid detergent insoluble protein concentrations than Kodiak silage. Results of the in situ study indicated that Kodiak silage had greater ruminal dry matter (606 vs. 549 g kg-1), CP (828 vs. 752 g kg -1) and NDF (272 vs. 227 g kg-1) degradabilities than Mammouth. It was concluded that chemical composition and ruminal nutrient degradabilities of forage soybean silage were significantly influenced by cultivar. Key words: Soybean [Glycine max (L.) Merill.], silage, ensiling; forage quality, nutrient degradability



Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
Kim Margarette C. Nogoy ◽  
Jia Yu ◽  
Young Gyu Song ◽  
Shida Li ◽  
Jong-Wook Chung ◽  
...  

The amaranth plants showed high potential feed value as forage for ruminants. An in-depth study of this plant, particularly in cattle, will help extend its utilization as an alternative protein and fiber feed source in cattle feeding. In this study, the nutrient compositions of three different species of amaranth, Amaranthus caudatus L., Amaranthus cruentus L., and Amaranthus hypochondriacus L.—two varieties for each species, A.ca 74, A.ca 91, A.cu 62, A.cu 66, A. hy 30, and A. hy 48—were evaluated. The in vitro technique was used to evaluate the fermentation characteristics such as total gas production, total volatile fatty acids (VFA) concentration, pH, and ammonia concentration of the rumen fluid. Moreover, the effective degradabilities of dry matter (EDDM) and crude protein (EDCP) of the amaranth forages were determined through in situ bag technique. The amaranth forages: A. caudatus, A. cruentus, and A. hypochondriacus showed better nutritive value than the locally produced forages in Chungcheong province of Korea. The CP of the amaranth ranged from 11.95% to 14.19%, and the neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents ranged from 45.53% to 70.88% and 34.17% to 49.83%, respectively. Among the amaranth varieties, A. hypochondriacus 48 showed the most excellent ruminant feed nutrient quality (CP, 14.19%; NDF, 45.53%; and ADF, 34.17%). The effective degradabilities of dry matter (EDDM; 33–56%) and crude protein EDCP (27–59%) of the amaranth were lower compared to other studies, which could be due to the maturity stage at which the forages were harvested. Nonetheless, A. hypochondriacus 48 showed the highest EDDM (56.73%) and EDCP (59.09%). The different amaranth species did not differ greatly in terms of total VFA concentration or molar proportions, total gas production, or ammonia-N concentration. The high nutrient composition, and highly effective degradability of dry matter and crude protein, coupled with the favorable fermentation characteristics, suggest that the amaranth forages showed good to excellent feed quality for cattle.



2019 ◽  
Vol 40 (6Supl3) ◽  
pp. 3605
Author(s):  
Ernestina dos Ribeiro Santos Neta ◽  
Luis Rennan Sampaio Oliveira ◽  
Rafael Mezzomo ◽  
Daiany Íris Gomes ◽  
Janaina Barros Luz ◽  
...  

This study evaluated the chemical composition and ruminal degradability of dry matter (DM), neutral detergent fiber corrected for ash and protein (NDFap) and crude protein (CP) in byproducts of African oil palm (palm cake, kernel or fiber), macaúba (pulp cake and kernel cake), acai (acai fruit), babassu (kernel cake) and pineapple (peel, crown and bagasse silage). Nineteen rumen-fistulated sheep were kept in individual stalls, receiving a daily diet composed of elephant grass silage and corn and soybean concentrate. After preparation in nylon bags, the byproduct samples were incubated for 0, 3, 6, 12, 16, 18, 24, 48, 72, 96, 120 and 144 hours, with three replicates of each ingredient per incubation time. The divergence between the protein nutritional value and energy nutritional value, based on discriminatory variables between groups, was estimated by cluster analysis. The effective degradability of DM, NDFap and CP for the different byproducts was, respectively, 35.9, 26.9 and 59.0% for palm cake; 48.3, 34.3 and 76.4% for palm kernel; 21.1, 6.6 and 50.3% for palm fiber; 34.3, 15.0 and 52.8% for macaúba pulp cake; 58.1; 63.0 and 51.6% for macaúba kernel cake; 49.7, 49.6 and 41.8% for babassu cake; 53.4, 40.5 and 79.8% for pineapple bagasse silage; and 21.3, 17.0 and 38.9% for acai fruit. Based on their NDFap and CP characteristics, the feeds were clustered in up to four different groups.



2017 ◽  
Vol 39 (3) ◽  
pp. 289 ◽  
Author(s):  
Paula Martins Olivo ◽  
Geraldo Tadeu dos Santos ◽  
Luís Carlos Vinhas Ítavo ◽  
Ranulfo Combuca da Silva Junior ◽  
Eduardo Souza Leal ◽  
...  

Agroindustrial co-products are a viable alternative for use in animal nutrition. Tests were conducted using eight different types of co-products and feed to evaluate the chemical composition, in vitro digestibility of dry matter, crude protein and neutral detergent fiber, and gas production by them. The co-products tested were: coffee hulls; pelleted citrus pulp; grape residue; soybean hulls; cottonseed; cassava foliage; and foods usually supplied to ruminants: corn silage and ground corn concentrate. Data of in vitro digestibility of dry matter, crude protein and neutral detergent fiber were tested by analysis of variance using the least square method; the results of gas production were interpreted by a non-linear regression by the Gauss-Newton method; and the effects of treatments were evaluated by the Tukey’s test. The coefficients of in vitro digestibility of dry matter, crude protein and neutral detergent fiber of co-products were different. Gas production was also different between co-products and feeds evaluated for the volume of gas produced from the fast and slow degradation fractions, degradation rate, bacterial colonization time, and the total volume of gas produced. The evaluated co-products exhibited greater in vitro dry matter digestibility compared to corn silage, except for cottonseed, grape residue, and cassava foliage. Co-products showed higher values of in vitro crude protein digestibility compared to corn silage, and a reduced in vitro digestibility of neutral detergent fiber, except for pelleted citrus pulp and soybean hulls. Corn silage produced larger volume of gas from the fast degradation fraction compared to the co-products and corn concentrate. Co-products analyzed had appropriate nutritional characteristics according to the techniques applied and can be included in ruminant diets. 



2006 ◽  
Vol 12 (1) ◽  
pp. 79
Author(s):  
Carlos Boschini

The purpose of this study was to determine the ruminal degradability of dry matter, crude protein, neutral detergent fiber and their fractions, contained in regrowth of mulberry at 56, 84 and 112 days. The degradation of leaves, stems and the whole plant was calculated. The potential degradability of these three components diminished as the regrowth aged. The soluble fraction of the dry matter was reduced from 29% to 25% in the leaves and from 27% to 19% in the stems between the 56th and the112th day. The degradable fraction in the stem remained constant (61-63%) on the three measuring days, with ruminal degradation levels of 14%, 10% and 9%/h respectively. In the stem the degradable fraction diminished from 42% to 30% between the 56th and 112th day, with degradation speeds of 8.4%, 6.7 % and 5.3%/h. The soluble crude protein diminished with age from 41% to 33% in the entire plant and the degradable fraction remained constant between 49% and 51%. The degradation rate was higher than 9.4%/h. The neutral detergent fiber had a degradable fraction of 71%, 62% y 43% on the 56th, 84th and 112th day, with degradation rates of 13%, 10% y 9%/h respectively. The degradation of the neutral detergent fiber began in the rumen with a lag time of 1.5 to 3.2 hours.



2021 ◽  
Vol 43 ◽  
pp. e53004
Author(s):  
Francyelle Ruana Faria da Silva ◽  
Ana Karina Dias Salman ◽  
Pedro Gomes da Cruz ◽  
Marlos Oliveira Porto ◽  
Jucilene Cavali ◽  
...  

To evaluate the bromatological composition and ruminal degradability of dry matter (DM), crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF) of Xaraés palisade grass (Urochloa brizantha ‘Xaraes’ syn Brachiaria brizantha) under grazing in integrated crop, livestock (ICL), and forest (ICLF) systems, we conducted an in situ degradability trial in randomized blocks with three non-lactating 3/4 Gyr × 1/4 Holstein cows, provided with ruminal cannula. The management of Xaraés palisade grass was similar in both systems, differing only regarding shading in the ICLF system provided by eucalyptus trees (average 65% crown cover). Grass samples were incubated for 0, 3, 6, 9, 12, 24, 36, 48, 72, and 96 hours. Considering the passage rate 2% h-1, the Xaraés palisade grass of ICL system had greater NDF effective degradability in relation to ICLF (46.38% vs 44.98%). However, the palisade grass CP potential degradability was greater in the ICLF than in the ICL system (68.92% vs. 65.40%). The presence of trees in the pasture has effect on nutritional traits of the Xaraés palisade grass, increasing its protein content and degradability and reducing its fiber degradability.



2018 ◽  
Vol 40 (1) ◽  
pp. 39946 ◽  
Author(s):  
Bruno Spindola Garcez ◽  
Claudiane Morais dos Santos ◽  
Cicero Nicolini ◽  
Francisco Araújo Machado ◽  
Ernando De Oliveira Macedo ◽  
...  

 The objective of this study was to evaluate in situ ruminal degradability of elephant grass silages with addition of 8, 16 and 24% of faveira pods in experimental silos of 100x50 mm, equipped with bunsen valves. The content of crude protein (cp) and neutral detergent fiber (ndf) were determined on a dry matter basis. To evaluate the in situ degradability of dm, cp and ndf, nylon bags containing 4 g sample were incubated in the rumen of three fistulated cattle for 6, 24 and 72h. The dm and cp content of elephant grass silages increased (p < 0.05) from 8% inclusion associated with a higher concentration of constituents in faveira pods (77.25 and 9.61% dm). The ndf fraction reduced 10.91% (p < 0.05) when adding 24% pods. The potential degradation (pd) of dm and cp increased with inclusion of faveira pods, with 75.97 and 95.21%, respectively, for the level of 24%. There was increased potentially degradable fraction (bp) of ndf by 7.07% with inclusion of 24% faveira pods, as well as a reduced colonization time (lag) from 3.81 to 3.44 hours. The addition of up to 24% faveira pods to elephant grass silages improves rumen microbial degradation, and it is indicated this level of addition to obtain better quality silage. 



Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1247 ◽  
Author(s):  
Trinidad de Evan ◽  
Andrea Vintimilla ◽  
Eduarda Molina-Alcaide ◽  
María Ranilla ◽  
María Carro

The nutritive values for ruminants of cauliflower (CAU) and Romanesco (ROM) wastes (leaves, stems and sprouts) were assessed by analyzing their chemical composition, in vitro ruminal fermentation, and in vitro intestinal digestibility. In addition, the in vitro ruminal fermentation of diets containing increasing amounts of CAU was studied. The dry matter (DM) content of leaves, stems and sprouts of both vegetables was lower than 10%, but they contained high crude protein (CP; 19.9 to 33.0%) and sugar (16.3 to 28.7%) levels, and low neutral detergent fiber (21.6 to 32.3%). Stems and sprouts were more rapidly and extensively fermented in the rumen than leaves, but there were only minor differences the fermentation profiles of both vegetables. The estimated metabolizable energy content ranged from 9.3 (leaves) to 10.8 (sprouts) MJ/kg DM. The CP rumen degradability (12-h in situ incubations) was greater than 80.0% for all fractions, and the in vitro intestinal digestibility of CP ranged from 85.7 to 93.2%. The inclusion of up to 24% of dried CAU in the concentrate of a mixed diet (40:60 alfalfa hay:concentrate) increased the in vitro rumen fermentation of the CAU diet, but did not affect methane (CH4) production, indicating the lack of antimethanogenic compounds in CAU.



2016 ◽  
Vol 37 (1) ◽  
pp. 279 ◽  
Author(s):  
Alexandre Paula Braga ◽  
Antonia Vilma de Andrade Ferreira Amâncio ◽  
Josemir De Souza Gonçalves ◽  
Liz Carolina da Silva Lagos Cortes Assis ◽  
Cicília Maria Silva Souza ◽  
...  

The aim of this study was to evaluate the chemical composition and ruminal degradability of the dry matter (DM), crude protein (CP) and neutral detergent fiber (NDF) of fruit residues. Three fistulated sheep were held collectively in a pen, and fed daily with the studied residues in a diet consisting of canarana grass (Echinochloa pyramidalis) and a concentrate of corn and soybeans. The animals were allowed an adjustment period of seven days. The residues were dried in the sun, crushed in a forage machine, sorted using a 4.0-mm sieve, and incubated for 3, 6, 12, 24, 48, 72, and 96 h using nonwoven bags (weight 60g/m2, 14 ×12 cm²). Chemical analyses of the residues were performed using a randomized block experimental design with split plots. The cherimoya and tamarind residues showed the highest concentrations of CP (12.66% and 11.79%) the ether extract of cherimoya residue was the highest at 22.30%stands out the sour soup residue. The cashew and guava residues showed the highest levels of lignin (22.13 and 18.34%). The effective degradability of DM for the pineapple and tamarind residues to a passage rate of 5%/h were 53.04% and 42.61%, respectively. The guava, cherimoya, and cashew residues showed lower values at 19.16%, 26.86%, and 29.21%, respectively. The cherimoya, guava and pineapple residues showed the highest values of potential degradability for CP at 87%, 81%, 86.02% and 90.94%, respectively, with an average effective degradability of 50.0% at the rate of 5%/h. The pineapple (35.38%) and tamarind residues (34.49%) showed higher values of the effective degradability of NDF at a passage rate of 5%/h. Among the studied residues, the pineapple residue showed the greatest potential for use in animal feed based on chemical composition and rates of degradability.



Sign in / Sign up

Export Citation Format

Share Document