scholarly journals Phytocapping: Importance of Tree Selection and Soil Thickness

2009 ◽  
Vol 9 (5-6) ◽  
pp. 421-430 ◽  
Author(s):  
Kartik Venkatraman ◽  
Nanjappa Ashwath
Keyword(s):  
2021 ◽  
Vol 11 (12) ◽  
pp. 5499
Author(s):  
Nihal D. Salman ◽  
György Pillinger ◽  
Muammel M. Hanon ◽  
Péter Kiss

The applicability of the typical pressure–sinkage models used to characterize the soil’s bearing properties is limited to homogeneous soils (infinite thickness) that have no hard layer. At a given depth, a hard layer can have a considerable impact on the soil’s load-bearing capacity. It is thus necessary to alter the pressure–sinkage equation by taking this condition into account when assessing the load-bearing capacity. The present paper aims to determine a simple, high-fidelity model, in terms of soil characterization, that can account for the hard layer affection. To assess hard layer affection in this paper, a plate sinkage test (bevameter) was conducted on sandy loam soil. To this end, the soil was prepared by considering three bulk densities and two soil thickness levels at 7–9% moisture content levels. According to the results, this paper put forth a new perspective and related equations for characterizing bearing performance. The sinkage modulus (k) is an intrinsic soil parameter that has a determined unit of N/cm2 and is significant for managing the bearing performance. The results showed that the new modulus sinkage model incorporates the main factor of the rigid layer effect involving high fidelity that the conventional models have failed to account for.


2021 ◽  
Vol 10 (6) ◽  
pp. 396
Author(s):  
Ümit Yıldırım

In this study, geographic information system (GIS)-based, analytic hierarchy process (AHP) techniques were used to identify groundwater potential zones to provide insight to decisionmakers and local authorities for present and future planning. Ten different geo-environmental factors, such as slope, topographic wetness index, geomorphology, drainage density, lithology, lineament density, rainfall, soil type, soil thickness, and land-use classes were selected as the decision criteria, and related GIS tools were used for creating, analysing and standardising the layers. The final groundwater potential zones map was delineated, using the weighted linear combination (WLC) aggregation method. The map was spatially classified into very high potential, high potential, moderate potential, low potential, and very low potential. The results showed that 21.5% of the basin area is characterised by high to very high groundwater potential. In comparison, the very low to low groundwater potential occupies 57.15%, and the moderate groundwater potential covers 21.4% of the basin area. Finally, the GWPZs map was investigated to validate the model, using discharges and depth to groundwater data related to 22 wells scattered over the basin. The validation results showed that GWPZs classes strongly overlap with the well discharges and groundwater depth located in the given area.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 538
Author(s):  
Zihao Guo ◽  
Jianen Gao ◽  
Pengcheng Sun ◽  
Shaohui Dou ◽  
Juan Li ◽  
...  

Gully Land Consolidation (GLC) is a proven method to create farmlands and increase crop yields in the Loess Hilly and Gully Region, China. However, GLC influences phreatic water transformation and might cause the farmlands water disasters, such as salinization and swamping. For exploring the influence of GLC on phreatic water transformation and mitigating disasters, a series of indoor experiments were conducted in the artificial rainfall hall. Then, we simulated the phreatic water transformation patterns under more conditions with HYDRUS-3D. Finally, an engineering demonstration in the field was performed to validate our research. The indoor experiments indicated that GLC could increase phreatic water outflow rate 4.39 times and phreatic water coefficient (PWC) 2.86 times with a considerable delay. After calibration and validation with experimental data, the HYDRUS-3D was used to simulate phreatic water transformation under more soil thickness and rainfall intensities. Accordingly, we summarized the relationship among PWC, rainfall intensities, and soil thickness, and therefore suggested a blind ditch system to alleviate farmlands disasters. Field application showed that a blind ditch system could avoid disasters with 3.2 times the phreatic water transformation rate compared to loess. Our research provides implications for sustainable land uses and management in the region with thick soil covers.


2017 ◽  
Vol 5 (3) ◽  
pp. 479-492 ◽  
Author(s):  
Jon D. Pelletier

Abstract. The potential soil production rate, i.e., the upper limit at which bedrock can be converted into transportable material, limits how fast erosion can occur in mountain ranges in the absence of widespread landsliding in bedrock or intact regolith. Traditionally, the potential soil production rate has been considered to be solely dependent on climate and rock characteristics. Data from the San Gabriel Mountains of California, however, suggest that topographic steepness may also influence potential soil production rates. In this paper I test the hypothesis that topographically induced stress opening of preexisting fractures in the bedrock or intact regolith beneath hillslopes of the San Gabriel Mountains increases potential soil production rates in steep portions of the range. A mathematical model for this process predicts a relationship between potential soil production rates and average slope consistent with published data. Once the effects of average slope are accounted for, a small subset of the data suggests that cold temperatures may limit soil production rates at the highest elevations of the range due to the influence of temperature on vegetation growth. These results suggest that climate and rock characteristics may be the sole controls on potential soil production rates as traditionally assumed but that the porosity of bedrock or intact regolith may evolve with topographic steepness in a way that enhances the persistence of soil cover in compressive-stress environments. I develop an empirical equation that relates potential soil production rates in the San Gabriel Mountains to the average slope and a climatic index that accounts for temperature limitations on soil production rates at high elevations. Assuming a balance between soil production and erosion rates on the hillslope scale, I illustrate the interrelationships among potential soil production rates, soil thickness, erosion rates, and topographic steepness that result from the feedbacks among geomorphic, geophysical, and pedogenic processes in the San Gabriel Mountains.


Geology ◽  
2005 ◽  
Vol 33 (11) ◽  
pp. 917 ◽  
Author(s):  
Kyungsoo Yoo ◽  
Ronald Amundson ◽  
Arjun M. Heimsath ◽  
William E. Dietrich

2020 ◽  
Author(s):  
Dao Huy Giap

Abstract This study was conducted in the Daitu district of Thainguyen, Vietnam during November 2001 to January 2003 to identify and estimate potential areas for aquaculture development in a watershed area by integrating socio-economic and environmental data into a geographical information system (GIS) database. Fourteen base layers were used for land evaluation and grouped into four main land use requirements for aquaculture namely: (1) potential for pond construction (slope, land use type, soil thickness and elevation); (2) soil quality (soil type, texture and pH); (3) water availability (distance to water, water sources and precipitation); and (4) geographical and socio-economic factors (population density, distances to roads, local markets and hatcheries). The study demonstrated the usefulness of GIS modelling to select suitable sites for the development of watershed ponds, and the importance of using the data as a tool for planners to develop strategic plans for aquaculture development. The study indicated that about 4.7% (2,725 ha) of the total land area of 57,618 ha in Daitu district was suitable for watershed pond aquaculture, compared to the existing 404 ha of watershed ponds.


Sign in / Sign up

Export Citation Format

Share Document