Partially and Fully Constrained Ant Algorithms for the Optimal Solution of Large Scale Reservoir Operation Problems

2008 ◽  
Vol 22 (12) ◽  
pp. 1835-1857 ◽  
Author(s):  
M. H. Afshar ◽  
R. Moeini
Author(s):  
Ruiyang Song ◽  
Kuang Xu

We propose and analyze a temporal concatenation heuristic for solving large-scale finite-horizon Markov decision processes (MDP), which divides the MDP into smaller sub-problems along the time horizon and generates an overall solution by simply concatenating the optimal solutions from these sub-problems. As a “black box” architecture, temporal concatenation works with a wide range of existing MDP algorithms. Our main results characterize the regret of temporal concatenation compared to the optimal solution. We provide upper bounds for general MDP instances, as well as a family of MDP instances in which the upper bounds are shown to be tight. Together, our results demonstrate temporal concatenation's potential of substantial speed-up at the expense of some performance degradation.


2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110195
Author(s):  
Jianwen Guo ◽  
Xiaoyan Li ◽  
Zhenpeng Lao ◽  
Yandong Luo ◽  
Jiapeng Wu ◽  
...  

Fault diagnosis is of great significance to improve the production efficiency and accuracy of industrial robots. Compared with the traditional gradient descent algorithm, the extreme learning machine (ELM) has the advantage of fast computing speed, but the input weights and the hidden node biases that are obtained at random affects the accuracy and generalization performance of ELM. However, the level-based learning swarm optimizer algorithm (LLSO) can quickly and effectively find the global optimal solution of large-scale problems, and can be used to solve the optimal combination of large-scale input weights and hidden biases in ELM. This paper proposes an extreme learning machine with a level-based learning swarm optimizer (LLSO-ELM) for fault diagnosis of industrial robot RV reducer. The model is tested by combining the attitude data of reducer gear under different fault modes. Compared with ELM, the experimental results show that this method has good stability and generalization performance.


1995 ◽  
Vol 117 (1) ◽  
pp. 155-157 ◽  
Author(s):  
F. C. Anderson ◽  
J. M. Ziegler ◽  
M. G. Pandy ◽  
R. T. Whalen

We have examined the feasibility of using massively-parallel and vector-processing supercomputers to solve large-scale optimization problems for human movement. Specifically, we compared the computational expense of determining the optimal controls for the single support phase of gait using a conventional serial machine (SGI Iris 4D25), a MIMD parallel machine (Intel iPSC/860), and a parallel-vector-processing machine (Cray Y-MP 8/864). With the human body modeled as a 14 degree-of-freedom linkage actuated by 46 musculotendinous units, computation of the optimal controls for gait could take up to 3 months of CPU time on the Iris. Both the Cray and the Intel are able to reduce this time to practical levels. The optimal solution for gait can be found with about 77 hours of CPU on the Cray and with about 88 hours of CPU on the Intel. Although the overall speeds of the Cray and the Intel were found to be similar, the unique capabilities of each machine are better suited to different portions of the computational algorithm used. The Intel was best suited to computing the derivatives of the performance criterion and the constraints whereas the Cray was best suited to parameter optimization of the controls. These results suggest that the ideal computer architecture for solving very large-scale optimal control problems is a hybrid system in which a vector-processing machine is integrated into the communication network of a MIMD parallel machine.


2022 ◽  
Vol 24 (3) ◽  
pp. 0-0

This paper introduces a new approach of hybrid meta-heuristics based optimization technique for decreasing the computation time of the shortest paths algorithm. The problem of finding the shortest paths is a combinatorial optimization problem which has been well studied from various fields. The number of vehicles on the road has increased incredibly. Therefore, traffic management has become a major problem. We study the traffic network in large scale routing problems as a field of application. The meta-heuristic we propose introduces new hybrid genetic algorithm named IOGA. The problem consists of finding the k optimal paths that minimizes a metric such as distance, time, etc. Testing was performed using an exact algorithm and meta-heuristic algorithm on random generated network instances. Experimental analyses demonstrate the efficiency of our proposed approach in terms of runtime and quality of the result. Empirical results obtained show that the proposed algorithm outperforms some of the existing technique in term of the optimal solution in every generation.


Author(s):  
Jungho Park ◽  
Hadi El-Amine ◽  
Nevin Mutlu

We study a large-scale resource allocation problem with a convex, separable, not necessarily differentiable objective function that includes uncertain parameters falling under an interval uncertainty set, considering a set of deterministic constraints. We devise an exact algorithm to solve the minimax regret formulation of this problem, which is NP-hard, and we show that the proposed Benders-type decomposition algorithm converges to an [Formula: see text]-optimal solution in finite time. We evaluate the performance of the proposed algorithm via an extensive computational study, and our results show that the proposed algorithm provides efficient solutions to large-scale problems, especially when the objective function is differentiable. Although the computation time takes longer for problems with nondifferentiable objective functions as expected, we show that good quality, near-optimal solutions can be achieved in shorter runtimes by using our exact approach. We also develop two heuristic approaches, which are partially based on our exact algorithm, and show that the merit of the proposed exact approach lies in both providing an [Formula: see text]-optimal solution and providing good quality near-optimal solutions by laying the foundation for efficient heuristic approaches.


Author(s):  
Bernard K.S. Cheung

Genetic algorithms have been applied in solving various types of large-scale, NP-hard optimization problems. Many researchers have been investigating its global convergence properties using Schema Theory, Markov Chain, etc. A more realistic approach, however, is to estimate the probability of success in finding the global optimal solution within a prescribed number of generations under some function landscapes. Further investigation reveals that its inherent weaknesses that affect its performance can be remedied, while its efficiency can be significantly enhanced through the design of an adaptive scheme that integrates the crossover, mutation and selection operations. The advance of Information Technology and the extensive corporate globalization create great challenges for the solution of modern supply chain models that become more and more complex and size formidable. Meta-heuristic methods have to be employed to obtain near optimal solutions. Recently, a genetic algorithm has been reported to solve these problems satisfactorily and there are reasons for this.


2011 ◽  
Vol 1 (3) ◽  
pp. 32-46 ◽  
Author(s):  
Minghuang Li ◽  
Fusheng Yu

Building a linear fitting model for a given interval-valued data set is challenging since the minimization of the residue function leads to a huge combinatorial problem. To overcome such a difficulty, this article proposes a new semidefinite programming-based method for implementing linear fitting to interval-valued data. First, the fitting model is cast to a problem of quadratically constrained quadratic programming (QCQP), and then two formulae are derived to develop the lower bound on the optimal value of the nonconvex QCQP by semidefinite relaxation and Lagrangian relaxation. In many cases, this method can solve the fitting problem by giving the exact optimal solution. Even though the lower bound is not the optimal value, it is still a good approximation of the global optimal solution. Experimental studies on different fitting problems of different scales demonstrate the good performance and stability of our method. Furthermore, the proposed method performs very well in solving relatively large-scale interval-fitting problems.


2019 ◽  
Vol 42 (7) ◽  
pp. 1358-1374
Author(s):  
Tim Chen ◽  
CYJ Chen

This paper is concerned with the stability analysis and the synthesis of model-based fuzzy controllers for a nonlinear large-scale system. In evolved fuzzy NN (neural network) modeling, the NN model and LDI (linear differential inclusion) representation are established for the arbitrary nonlinear dynamics. The evolved bat algorithm (EBA) is first incorporated in the controlled algorithm of stability conditions, which could rapidly find the optimal solution and raise the control performance. This representation is constructed by taking advantage of sector nonlinearity that converts the nonlinear model to a multiple rule base linear model. A new sufficient condition guaranteeing asymptotic stability is implemented via the Lyapunov function in terms of linear matrix inequalities. Subsequently, based on this criterion and the decentralized control scheme, an evolved model-based fuzzy H infinity set is synthesized to stabilize the nonlinear large-scale system. Finally, a numerical example and simulation is given to illustrate the results.


2020 ◽  
Vol 12 (6) ◽  
pp. 2177
Author(s):  
Jun-Ho Huh ◽  
Jimin Hwa ◽  
Yeong-Seok Seo

A Hierarchical Subsystem Decomposition (HSD) is of great help in understanding large-scale software systems from the software architecture level. However, due to the lack of software architecture management, HSD documentations are often outdated, or they disappear in the course of repeated changes of a software system. Thus, in this paper, we propose a new approach for recovering HSD according to the intended design criteria based on a genetic algorithm to find an optimal solution. Experiments are performed to evaluate the proposed approach using two open source software systems with the 14 fitness functions of the genetic algorithm (GA). The HSDs recovered by our approach have different structural characteristics according to objectives. In the analysis on our GA operators, crossover contributes to a relatively large improvement in the early phase of a search. Mutation renders small-scale improvement in the whole search. Our GA is compared with a Hill-Climbing algorithm (HC) implemented by our GA operators. Although it is still in the primitive stage, our GA leads to higher-quality HSDs than HC. The experimental results indicate that the proposed approach delivers better performance than the existing approach.


Sign in / Sign up

Export Citation Format

Share Document