Quantifying the Human Induced Water Level Decline of China’s Largest Freshwater Lake from the Changing Underlying Surface in the Lake Region

2017 ◽  
Vol 32 (4) ◽  
pp. 1467-1482 ◽  
Author(s):  
Xuchun Ye ◽  
Chong-Yu Xu ◽  
Qi Zhang ◽  
Jing Yao ◽  
Xianghu Li
2009 ◽  
Vol 21 (5) ◽  
pp. 720-724 ◽  
Author(s):  
QI Shuhua ◽  
◽  
SHU Xiaobo ◽  
Daniel Brown ◽  
JIANG Luguang

2009 ◽  
Vol 57 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Linda Olsvig-Whittaker ◽  
Margareta Walczak ◽  
Amos Sabach ◽  
Eli Dror

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Stephan Schulz ◽  
Sahand Darehshouri ◽  
Elmira Hassanzadeh ◽  
Massoud Tajrishy ◽  
Christoph Schüth

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1469 ◽  
Author(s):  
Lingyan Qi ◽  
Jiacong Huang ◽  
Junfeng Gao ◽  
Zhen Cui

A recent dramatic decline in water level during the dry season in China’s largest freshwater lake (Lake Poyang) significantly influenced water availability and biogeochemical processes. To learn the potential causes of water level decline, this study investigated the hydrodynamic response to bathymetric changes during three typical hydrological years by scenario simulation using Environmental Fluid Dynamics Code (EFDC). The simulation results indicated that bathymetric changes resulted in a water level decrease during a low water level period. Inter-annual variation in the decrease rate implied that water level in typical dry and wet years were influenced more significantly than that in moderate hydrological years. A spatial gradient in the distribution of water level changes was also observed, which was mainly concentrated in the main channel. Water velocities also slowed down, weakly corresponding to the decrease in water level during the low water level period. Overall, bathymetric changes caused by sand mining contributed to water level and velocity variations, influencing the stability and sustainability of the lake ecosystem. This study can potentially enhance our understanding of the hydrodynamic processes in Lake Poyang and support water resource management.


2010 ◽  
Vol 160-162 ◽  
pp. 750-755
Author(s):  
Yu Kun Zhao ◽  
Ji Hong Yang ◽  
Qing An Li

Rapid drawdown of water level is one of the most important factors that influencing the embankment stability. Based on the principle of geomechanical model test and hydroaulic model test methods, the model test was performed to study Yellow River downstream embankment instability induced by rapid drawdown of water level. The slope models with geometric scale of 1:25, 1:45, 1:62.5 were constructed in the transparent plexiglass model box with 1.6m long, 0.8m wide and 0.6m high. Changes on the slope were recorded during water level decline at different velocity by digital camera and slope tracer etc. The model test results showed that during the rapid drawdown process, there was only small cracks and not slippage in advance; when the water level dropped to a certain height, the sliding distance increased suddenly, which showed that the rate of water level decline was behind the river water, and the slope weight and downslope hydrodynamic pressure by the saturation line in slope body were higher than water lever exceeds the sliding force in a very short period of time, which caused landslide; after the sliding body appearing, slide was continuous and not mutation.


Sign in / Sign up

Export Citation Format

Share Document