scholarly journals Use of a Multi-Objective Correlation Index to Analyze the Power Generation, Water Supply and Ecological Flow Mutual Feedback Relationship of a Reservoir

Author(s):  
Zhenhui Wu ◽  
Yadong Mei ◽  
Bei Cheng ◽  
Tiesong Hu
Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2542 ◽  
Author(s):  
Mufeng Chen ◽  
Zengchuan Dong ◽  
Wenhao Jia ◽  
Xiaokuan Ni ◽  
Hongyi Yao

The multi-objective optimal operation and the joint scheduling of giant-scale reservoir systems are of great significance for water resource management; the interactions and mechanisms between the objectives are the key points. Taking the reservoir system composed of 30 reservoirs in the upper reaches of the Yangtze River as the research object, this paper constructs a multi-objective optimal operation model integrating four objectives of power generation, ecology, water supply, and shipping under the constraints of flood control to analyze the inside interaction mechanisms among the objectives. The results are as follows. (1) Compared with single power generation optimization, multi-objective optimization improves the benefits of the system. The total power generation is reduced by only 4.09% at most, but the water supply, ecology, and shipping targets are increased by 98.52%, 35.09%, and 100% at most under different inflow conditions, respectively. (2) The competition between power generation and the other targets is the most obvious; the relationship between water supply and ecology depends on the magnitude of flow required by the control section for both targets, and the restriction effect of the shipping target is limited. (3) Joint operation has greatly increased the overall benefits. Compared with the separate operation of each basin, the benefits of power generation, water supply, ecology, and shipping increased by 5.50%, 45.99%, 98.49%, and 100.00% respectively in the equilibrium scheme. This study provides a widely used method to analyze the multi-objective relationship mechanism, and can be used to guide the actual scheduling rules.


2015 ◽  
Vol 15 (4) ◽  
pp. 753-765 ◽  
Author(s):  
Yue Zhao ◽  
Huan Ying ◽  
Jianzhong Zhou

The operations of reservoirs produce enormous economic and social benefits but also impact species composition and habitat distribution of the riverine ecosystem. Hence, the realization of conservation and restoration of the ecosystem calls for reservoir reoperation. It is a widespread consensus that providing suitable ecological flow (SEF) for ecosystems is a useful way to cushion adverse effects. In contrast to the conventional methods that take a minimum ecological flow as a constraint, studies have been conducted to establish multi-objective operation models with an ecological objective recently. This paper considers two cascaded reservoirs: the Three Gorges Project (TGP) and the Gezhouba Dam in the middle Yangtze River. By concentrating on urgent ecological problems such as the reproduction of four major species of Chinese carp and the propagation of Chinese sturgeon, a series of monthly SEF was synthesized. Afterward, a long-term multi-objective optimization model that maximizes power generation and minimizes the water volume that violates ecosystem water requirements was developed to study the relationship between the two objectives. The non-dominated sorting genetic algorithm II method was applied to solve the proposed model. The optimized results show that according to the present water control operating regulations, the monthly amount of released water of TGP can be sufficient for ecosystem requirements except in October. The ecological model is better in improving the river ecosystem, but at the expense of power generation loss. Moreover, this method provides a set of operational non-dominated schemes between the target objectives for decision-makers to select and could be useful for water resource management of reservoirs.


2021 ◽  
Vol 336 ◽  
pp. 02022
Author(s):  
Liang Meng ◽  
Wen Zhou ◽  
Yang Li ◽  
Zhibin Liu ◽  
Yajing Liu

In this paper, NSGA-Ⅱ is used to realize the dual-objective optimization and three-objective optimization of the solar-thermal photovoltaic hybrid power generation system; Compared with the optimal solution set of three-objective optimization, optimization based on technical and economic evaluation indicators belongs to the category of multi-objective optimization. It can be considered that NSGA-Ⅱ is very suitable for multi-objective optimization of solar-thermal photovoltaic hybrid power generation system and other similar multi-objective optimization problems.


2019 ◽  
Vol 21 (2) ◽  
pp. 257-278 ◽  
Author(s):  
Zhe Yang ◽  
Kan Yang ◽  
Lyuwen Su ◽  
Hu Hu

Abstract To efficiently develop power generation and solve downstream ecological health protection in Qingjiang basin, multi-objective ecological operation for cascade reservoirs (MOEOCR) model is established in contrast to conventional models that set ecological water requirement as constraint. The basic, suitable and ideal ecological water requirements in Geheyan and Gaobazhou sections are calculated using a requirement level index. Instead of the traditional evolution mode based on population, we introduce a shuffled frog leaping algorithm (SFLA) which evolves independently in sub-populations. Moreover, the SFLA is converted into a modified multi-objective algorithm (MMOSFLA) with strategies including chaotic population initialization, renewed frog grouping method and local search method, and elite frog set evolution based on cloud model. The water level corridor is used to help effectively handle complex constraints. The IGD and GD indexes are used to evaluate quality of solutions acquired by each method. In terms of normal year, the mean IGD and GD of MMOSFLA are 1.2 × 10–1 and 2.75 × 10–2, respectively. The scheduling results verify efficient search ability and convergence performance in solution diversity and distribution in comparison with other methods. Therefore, MMOSFLA is verified to provide an effective way to fulfill hydropower and ecological benefits facing the MOEOCR problem.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1836 ◽  
Author(s):  
Guanjun Liu ◽  
Hui Qin ◽  
Qin Shen ◽  
Rui Tian ◽  
Yongqi Liu

Reservoirs play a significant role in water resources management and water resource allocation. Traditional flood limited water level (FLWL) of reservoirs is set as a fixed value which over-considers the reservoir flood control and limits the benefits of reservoirs to a certain extent. However, the dynamic control of the reservoir FLWL is an effective solution. It is a method to temporarily increase the water level of the reservoir during the flood season by using forecast information and discharge capacity, and it can both consider flood control and power generation during the flood season. Therefore, this paper focuses on multi-objective optimal scheduling of dynamic control of FLWL for cascade reservoirs based on multi-objective evolutionary algorithm to get the trade-off between flood control and power generation. A multi-objective optimal scheduling model of dynamic control of FLWL for cascade reservoirs which contains a new dynamic control method is developed, and the proposed model consists of an initialization module, a dynamic control programming module and an optimal scheduling module. In order to verify the effectiveness of the model, a cascade reservoir consisting of seven reservoirs in the Hanjiang Basin of China were selected as a case study. Twenty-four-hour runoff data series for three typical hydrological years were used in this model. At the same time, two extreme schemes were chosen for comparison from optimized scheduling schemes. The comparison result showed that the power generation can be increased by 9.17 × 108 kW·h (6.39%) at most, compared to the original design scheduling scheme, while the extreme risk rate also increased from 0.1% to 0.268%. In summary, experimental results show that the multi-objective optimal scheduling model established in this study can provide decision makers with a set of alternative feasible optimized scheduling schemes by considering the two objectives of maximizing power generation and minimizing extreme risk rate.


Sign in / Sign up

Export Citation Format

Share Document