Effect of Configurations, Bacterial Adhesion, and Anode Surface Area on Performance of Microbial Fuel Cells Used for Treatment of Synthetic Wastewater

2015 ◽  
Vol 226 (9) ◽  
Author(s):  
Safwat Ahmed ◽  
Ehab Rozaik ◽  
Hisham Abdelhalim
Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 135
Author(s):  
Asim Ali Yaqoob ◽  
Mohamad Nasir Mohamad Ibrahim ◽  
Khalid Umar ◽  
Showkat Ahmad Bhawani ◽  
Anish Khan ◽  
...  

Benthic microbial fuel cells (BMFCs) are considered to be one of the eco-friendly bioelectrochemical cell approaches nowadays. The utilization of waste materials in BMFCs is to generate energy and concurrently bioremediate the toxic metals from synthetic wastewater, which is an ideal approach. The use of novel electrode material and natural organic waste material as substrates can minimize the present challenges of the BMFCs. The present study is focused on cellulosic derived graphene-polyaniline (GO-PANI) composite anode fabrication in order to improve the electron transfer rate. Several electrochemical and physicochemical techniques are used to characterize the performance of anodes in BMFCs. The maximum current density during polarization behavior was found to be 87.71 mA/m2 in the presence of the GO-PANI anode with sweet potato as an organic substrate in BMFCs, while the GO-PANI offered 15.13 mA/m2 current density under the close circuit conditions in the presence of 1000 Ω external resistance. The modified graphene anode showed four times higher performance than the unmodified anode. Similarly, the remediation efficiency of GO-PANI was 65.51% for Cd (II) and 60.33% for Pb (II), which is also higher than the unmodified graphene anode. Furthermore, multiple parameters (pH, temperature, organic substrate) were optimized to validate the efficiency of the fabricated anode in different environmental atmospheres via BMFCs. In order to ensure the practice of BMFCs at industrial level, some present challenges and future perspectives are also considered briefly.


2007 ◽  
Vol 73 (16) ◽  
pp. 5347-5353 ◽  
Author(s):  
Hanno Richter ◽  
Martin Lanthier ◽  
Kelly P. Nevin ◽  
Derek R. Lovley

ABSTRACT The ability of Pelobacter carbinolicus to oxidize electron donors with electron transfer to the anodes of microbial fuel cells was evaluated because microorganisms closely related to Pelobacter species are generally abundant on the anodes of microbial fuel cells harvesting electricity from aquatic sediments. P. carbinolicus could not produce current in a microbial fuel cell with electron donors which support Fe(III) oxide reduction by this organism. Current was produced using a coculture of P. carbinolicus and Geobacter sulfurreducens with ethanol as the fuel. Ethanol consumption was associated with the transitory accumulation of acetate and hydrogen. G. sulfurreducens alone could not metabolize ethanol, suggesting that P. carbinolicus grew in the fuel cell by converting ethanol to hydrogen and acetate, which G. sulfurreducens oxidized with electron transfer to the anode. Up to 83% of the electrons available in ethanol were recovered as electricity and in the metabolic intermediate acetate. Hydrogen consumption by G. sulfurreducens was important for ethanol metabolism by P. carbinolicus. Confocal microscopy and analysis of 16S rRNA genes revealed that half of the cells growing on the anode surface were P. carbinolicus, but there was a nearly equal number of planktonic cells of P. carbinolicus. In contrast, G. sulfurreducens was primarily attached to the anode. P. carbinolicus represents the first Fe(III) oxide-reducing microorganism found to be unable to produce current in a microbial fuel cell, providing the first suggestion that the mechanisms for extracellular electron transfer to Fe(III) oxides and fuel cell anodes may be different.


Author(s):  
Zhou Ye ◽  
Junbo Hou ◽  
Michael W. Ellis ◽  
Bahareh Behkam

A three-electrode system was used to study the effect of anode surface roughness on the performance of microbial fuel cells (MFCs). Two glassy carbon plates were polished to uniform roughness of the orders of magnitude of 10s of nm and 100s of nm. Atomic force microscopy (AFM) was used to quantify the roughness as well as the 3D topography of the surfaces. Multiple electrochemical methods including potentiostatic tests, potentiodynamic tests, and electrochemical impedance spectroscopy (EIS) were utilized to monitor the performance of the glassy carbon electrodes. After 275 hours of experimentation, the current density generated by the rough electrode was much higher than that generated by the smooth one. Furthermore, the charge-transfer resistance of the rough electrode was lower than that of the smooth one. The better electrochemical performance of the rough surface may be due to denser biofilm grown on the surface, which was observed by scanning electron microscopy (SEM).


2012 ◽  
Author(s):  
Alan E Yost ◽  
Ann D Christy ◽  
Lingying Zhao ◽  
Olli H Tuovinen

Author(s):  
Pedy Artsanti ◽  
Sudarlin Sudarlin ◽  
Eka Fadzillah Kirana

The effect of increasing surface area of graphite electrode on the performance of dual chamber Microbial Fuel Cells (MFC) was observed. The surface area of graphite electrode (anode and cathode) that was using in this experiment was 29.5cm2 and 44.5cm2 for the A and B reactor, respectively. The anode chamber contained mixed microorganism culture from real wastewater of textile industry and the cathode chamber contained 0.1M potassium permanganate electrolyte solution. The salt bridge was required to stabilize the charge between the anode and cathode chambers, and the electrodes attached to the anode and cathode chambers as the electron catcher. Both, the A and B reactor were observed for 72 hours of running time. The voltage and power density were found to increase with the increase in surface area of the graphite electrode. The highest power density was 93.93mWm-2 and 197.23mWm-2 that obtained at 36 hours and 48 hours on the A and B reactor, respectively. At the end of experiment, these MFCs system could also reduce COD by 28.6% and 15.6% on A and B reactor, respectively.


Sign in / Sign up

Export Citation Format

Share Document