Methane flux from paddy vegetated soil: a comparison between biogas digested liquid and chemical fertilizer

2014 ◽  
Vol 23 (2) ◽  
pp. 139-148 ◽  
Author(s):  
Ankit Singla ◽  
Suresh Kumar Dubey ◽  
Muhammad Aslam Ali ◽  
Kazuyuki Inubushi
2018 ◽  
Vol 24 (2) ◽  
Author(s):  
SUPRIYA DIXIT ◽  
R. K. GUPTA

Currently, a real challenge for the workers in the agricultural research field is to stop or reduce the use of expensive agrochemicals/ chemical fertilizers which are hazardous to the environment as well as human health. Present study was aimed to improve the growth and obtain optimum yield of Vigna crop with eco-friendly, non-toxic way and to reduce the use of agrochemical/chemical fertilizer application in agricultural activities. A pot experiment was conducted to study the effect of chemical fertilizer (DAP) and biofertilizer ( Rhizobium strain) separately and in combination on seed germination and seedling growth (at 30 days) based on morphological parameters such as seedling length (cm), fresh weight (g), dry weight (g) and leaf area (cm)2 of Vigna radiata (L.) Wilczek. After one month (30 Days) observations, it was found that seedling length, fresh and dry weights and leaf area were maximum in T4 and minimum in T15, T7 and T8 favored improved seedling length and leaf area whereas T7, T8, and T9 favored improved fresh and dry weights as compared to control.


2015 ◽  
Vol 4 (3) ◽  
pp. 460-468
Author(s):  
Yap Chin Ann

The last nutrient management review of black pepper was done in 1968. There is, therefore, a need to develop new technology to improve pepper production and transfer that technology to production site. This experiment was carried out to study the effect of newly developed biochemical fertilizer on some physiological characteristics, yield and soil fertility of pepper. The treatment consisted of T1 (BS): chemical fertilizer (N:12%, P:12%, K:17%); T2 (BK1): biochemical fertilizer F1 N:15%, P:5%, K:14) and T3 (BK2): biochemical fertilizer F2 (N:13%, P:4%, K:12). The biochemical fertilizer F1 out-yielded chemical and biochemical fertilizer F2 by 75.38% and 16.45% respectively with the higher yield being associated with various phonotypical alterations, which are reported here. Significant measureable changes were observed in physiological processes and plant characteristics, such as large leaf area index, more chlorophyll content and high photosynthesis rate coupled with lower transpiration rate in biochemical fertilizer F1(BK1) treatment compared with other treatment. The high fertility level in biochemical fertilizer F1 and biochemical fertilizer F2 (BK2) reflected the important of organic material in improving soil quality. In conclusion, the achieve high growth performance and yield in pepper, chemical fertilizer alone is insufficient whilst combination of organic and inorganic fertilizer with balance nutrient content gave a significant increase in yield and growth of pepper. 


2016 ◽  
Vol 2016 (3) ◽  
pp. 237-245
Author(s):  
José R Bicudo ◽  
Dominika Celmer-Repin ◽  
Trevor Brown ◽  
Tammy Bellamy

2017 ◽  
Author(s):  
Stella C. Ross ◽  
◽  
Scott Klasek ◽  
Wei-Li Hong ◽  
Marta E. Torres ◽  
...  

2001 ◽  
Vol 31 (2) ◽  
pp. 208-223 ◽  
Author(s):  
Christopher Potter ◽  
Jill Bubier ◽  
Patrick Crill ◽  
Peter Lafleur

Predicted daily fluxes from an ecosystem model for water, carbon dioxide, and methane were compared with 1994 and 1996 Boreal Ecosystem–Atmosphere Study (BOREAS) field measurements at sites dominated by old black spruce (Picea mariana (Mill.) BSP) (OBS) and boreal fen vegetation near Thompson, Man. Model settings for simulating daily changes in water table depth (WTD) for both sites were designed to match observed water levels, including predictions for two microtopographic positions (hollow and hummock) within the fen study area. Water run-on to the soil profile from neighboring microtopographic units was calibrated on the basis of daily snowmelt and rainfall inputs to reproduce BOREAS site measurements for timing and magnitude of maximum daily WTD for the growing season. Model predictions for daily evapotranspiration rates closely track measured fluxes for stand water loss in patterns consistent with strong controls over latent heat fluxes by soil temperature during nongrowing season months and by variability in relative humidity and air temperature during the growing season. Predicted annual net primary production (NPP) for the OBS site was 158 g C·m–2 during 1994 and 135 g C·m–2 during 1996, with contributions of 75% from overstory canopy production and 25% from ground cover production. Annual NPP for the wetter fen site was 250 g C·m–2 during 1994 and 270 g C·m–2 during 1996. Predicted seasonal patterns for soil CO2 fluxes and net ecosystem production of carbon both match daily average estimates at the two sites. Model results for methane flux, which also closely match average measured flux levels of –0.5 mg CH4·m–2·day–1 for OBS and 2.8 mg CH4·m–2·day–1 for fen sites, suggest that spruce areas are net annual sinks of about –0.12 g CH4·m–2, whereas fen areas generate net annual emissions on the order of 0.3–0.85 g CH4·m–2, depending mainly on seasonal WTD and microtopographic position. Fen hollow areas are predicted to emit almost three times more methane during a given year than fen hummock areas. The validated model is structured for extrapolation to regional simulations of interannual trace gas fluxes over the entire North America boreal forest, with integration of satellite data to characterize properties of the land surface.


Author(s):  
Chang-Hao Gao ◽  
Shan Zhang ◽  
Qian-Su Ding ◽  
Ming-Yue Wei ◽  
Huan Li ◽  
...  
Keyword(s):  

Author(s):  
Haiming Tang ◽  
Chao Li ◽  
Lihong Shi ◽  
Li Wen ◽  
Kaikai Cheng ◽  
...  

Abstract Soil organic matter (SOM) and its fractions play an important role in maintaining or improving soil quality and soil fertility. Therefore, the effects of a 34-year long-term fertilizer regime on six functional SOM fractions under a double-cropping rice paddy field of southern China were studied in the current paper. The field experiment included four different fertilizer treatments: chemical fertilizer alone (MF), rice straw residue and chemical fertilizer (RF), 30% organic manure and 70% chemical fertilizer (OM) and without fertilizer input as control (CK). The results showed that coarse unprotected particulate organic matter (cPOM), biochemically, physically–biochemically and chemically protected silt-sized fractions (NH-dSilt, NH-μSilt and H-dSilt) were the main carbon (C) storage fractions under long-term fertilization conditions, accounting for 16.7–26.5, 31.1–35.6, 16.2–17.3 and 7.5–8.2% of the total soil organic carbon (SOC) content in paddy soil, respectively. Compared with control, OM treatment increased the SOC content in the cPOM, fine unprotected POM fraction, pure physically protected fraction and physico-chemically protected fractions by 58.9, 106.7, 117.6 and 28.3%, respectively. The largest proportion of SOC to total SOC in the different fractions was biochemically protected, followed by chemically and unprotected, and physically protected were the smallest. These results suggested that a physical protection mechanism plays an important role in stabilizing C of paddy soil. In summary, the results showed that higher functional SOM fractions and physical protection mechanism play an important role in SOM cycling in terms of C sequestration under the double-cropping rice paddy field.


Sign in / Sign up

Export Citation Format

Share Document