Ecosystem modeling of methane and carbon dioxide fluxes for boreal forest sites

2001 ◽  
Vol 31 (2) ◽  
pp. 208-223 ◽  
Author(s):  
Christopher Potter ◽  
Jill Bubier ◽  
Patrick Crill ◽  
Peter Lafleur

Predicted daily fluxes from an ecosystem model for water, carbon dioxide, and methane were compared with 1994 and 1996 Boreal Ecosystem–Atmosphere Study (BOREAS) field measurements at sites dominated by old black spruce (Picea mariana (Mill.) BSP) (OBS) and boreal fen vegetation near Thompson, Man. Model settings for simulating daily changes in water table depth (WTD) for both sites were designed to match observed water levels, including predictions for two microtopographic positions (hollow and hummock) within the fen study area. Water run-on to the soil profile from neighboring microtopographic units was calibrated on the basis of daily snowmelt and rainfall inputs to reproduce BOREAS site measurements for timing and magnitude of maximum daily WTD for the growing season. Model predictions for daily evapotranspiration rates closely track measured fluxes for stand water loss in patterns consistent with strong controls over latent heat fluxes by soil temperature during nongrowing season months and by variability in relative humidity and air temperature during the growing season. Predicted annual net primary production (NPP) for the OBS site was 158 g C·m–2 during 1994 and 135 g C·m–2 during 1996, with contributions of 75% from overstory canopy production and 25% from ground cover production. Annual NPP for the wetter fen site was 250 g C·m–2 during 1994 and 270 g C·m–2 during 1996. Predicted seasonal patterns for soil CO2 fluxes and net ecosystem production of carbon both match daily average estimates at the two sites. Model results for methane flux, which also closely match average measured flux levels of –0.5 mg CH4·m–2·day–1 for OBS and 2.8 mg CH4·m–2·day–1 for fen sites, suggest that spruce areas are net annual sinks of about –0.12 g CH4·m–2, whereas fen areas generate net annual emissions on the order of 0.3–0.85 g CH4·m–2, depending mainly on seasonal WTD and microtopographic position. Fen hollow areas are predicted to emit almost three times more methane during a given year than fen hummock areas. The validated model is structured for extrapolation to regional simulations of interannual trace gas fluxes over the entire North America boreal forest, with integration of satellite data to characterize properties of the land surface.

2008 ◽  
Vol 5 (5) ◽  
pp. 4161-4207 ◽  
Author(s):  
H. W. Ter Maat ◽  
R. W. A. Hutjes

Abstract. A large scale mismatch exists between our understanding and quantification of ecosystem atmosphere exchange of carbon dioxide at local scale and continental scales. This paper will focus on the carbon exchange on the regional scale to address the following question: What are the main controlling factors determining atmospheric carbon dioxide content at a regional scale? We use the Regional Atmospheric Modelling System (RAMS), coupled with a land surface scheme simulating carbon, heat and momentum fluxes (SWAPS-C), and including also sub models for urban and marine fluxes, which in principle include the main controlling mechanisms and capture the relevant dynamics of the system. To validate the model, observations are used which were taken during an intensive observational campaign in the central Netherlands in summer 2002. These included flux-site observations, vertical profiles at tall towers and spatial fluxes of various variables taken by aircraft. The coupled regional model (RAMS-SWAPS-C) generally does a good job in simulating results close to reality. The validation of the model demonstrates that surface fluxes of heat, water and CO2 are reasonably well simulated. The comparison against aircraft data shows that the regional meteorology is captured by the model. Comparing spatially explicit simulated and observed fluxes we conclude that in general simulated latent heat fluxes are underestimated by the model to the observations which exhibit large standard deviation for all flights. Sensitivity experiments demonstrated the relevance of the urban emissions of carbon dioxide for the carbon balance in this particular region. The same test also show the relation between uncertainties in surface fluxes and those in atmospheric concentrations.


2020 ◽  
Author(s):  
Gesa Meyer ◽  
Elyn Humphreys ◽  
Joe Melton ◽  
Peter Lafleur ◽  
Philip Marsh ◽  
...  

<p>Four years of growing season eddy covariance measurements of net carbon dioxide (CO<sub>2</sub>) and energy fluxes were used to examine the similarities/differences in surface-atmosphere interactions at two dwarf shrub tundra sites within Canada’s Southern Arctic ecozone, separated by approximately 1000 km. Both sites, Trail Valley Creek (TVC) and Daring Lake (DL1), are characterised by similar climate (with some differences in radiation due to latitudinal differences), vegetation composition and structure, and are underlain by continuous permafrost, but differ in their soil characteristics. Total atmospheric heating (the sum of latent and sensible heat fluxes) was similar at the two sites. However, at DL1, where the surface organic layer was thinner and mineral soil coarser in texture, latent heat fluxes were greater, sensible heat fluxes were lower, soils were warmer and the active layer thicker. At TVC, cooler soils likely kept ecosystem respiration relatively low despite similar total growing season productivity. As a result, the 4-year mean net growing season ecosystem CO<sub>2 </sub>uptake (May 1 - September 30) was almost twice as large at TVC (64 ± 19 g C m<sup>-2</sup>) compared to DL1 (33 ± 11 g C m<sup>-2</sup>). These results highlight that soil and thaw characteristics are important to understand variability in surface-atmosphere interactions among tundra ecosystems.</p><p>As recent studies have shown, winter fluxes play an important role in the annual CO<sub>2</sub> balance of Arctic tundra ecosystems. However, flux measurements were not available at TVC and DL1 during the cold season. Thus, the process-based ecosystem model CLASSIC (the Canadian Land Surface Scheme including biogeochemical Cycles, formerly CLASS-CTEM) was used to simulate year-round fluxes. In order to represent the Arctic shrub tundra better, shrub and sedge plant functional types were included in CLASSIC and results were evaluated using measurements at DL1. Preliminary results indicate that cold season CO<sub>2</sub> losses are substantial and may exceed the growing season CO<sub>2</sub> uptake at DL1 during 2010-2017. The joint use of observations and models is valuable in order to better constrain the Arctic CO<sub>2</sub> balance.  </p>


2010 ◽  
Vol 7 (8) ◽  
pp. 2397-2417 ◽  
Author(s):  
H. W. Ter Maat ◽  
R. W. A. Hutjes ◽  
F. Miglietta ◽  
B. Gioli ◽  
F. C. Bosveld ◽  
...  

Abstract. This paper is a case study to investigate what the main controlling factors are that determine atmospheric carbon dioxide content for a region in the centre of The Netherlands. We use the Regional Atmospheric Modelling System (RAMS), coupled with a land surface scheme simulating carbon, heat and momentum fluxes (SWAPS-C), and including also submodels for urban and marine fluxes, which in principle should include the dominant mechanisms and should be able to capture the relevant dynamics of the system. To validate the model, observations are used that were taken during an intensive observational campaign in central Netherlands in summer 2002. These include flux-tower observations and aircraft observations of vertical profiles and spatial fluxes of various variables. The simulations performed with the coupled regional model (RAMS-SWAPS-C) are in good qualitative agreement with the observations. The station validation of the model demonstrates that the incoming shortwave radiation and surface fluxes of water and CO2 are well simulated. The comparison against aircraft data shows that the regional meteorology (i.e. wind, temperature) is captured well by the model. Comparing spatially explicitly simulated fluxes with aircraft observed fluxes we conclude that in general latent heat fluxes are underestimated by the model compared to the observations but that the latter exhibit large variability within all flights. Sensitivity experiments demonstrate the relevance of the urban emissions of carbon dioxide for the carbon balance in this particular region. The same tests also show the relation between uncertainties in surface fluxes and those in atmospheric concentrations.


2001 ◽  
Vol 31 (9) ◽  
pp. 1540-1550 ◽  
Author(s):  
Robert G Striegl ◽  
Kimberly P Wickland

Soil carbon dioxide (CO2) emission (soil respiration), net CO2 exchange after photosynthetic uptake by ground-cover plants, and soil CO2 concentration versus depth below land surface were measured at four ages of jack pine (Pinus banksiana Lamb.) forest in central Saskatchewan. Soil respiration was smallest at a clear-cut site, largest in an 8-year-old stand, and decreased with stand age in 20-year-old and mature (60–75 years old) stands during May– September 1994 (12.1, 34.6, 31.5, and 24.9 mol C·m–2, respectively). Simulations of soil respiration at each stand based on continuously recorded soil temperature were within one standard deviation of measured flux for 48 of 52 measurement periods, but were 10%–30% less than linear interpolations of measured flux for the season. This was probably due to decreased soil respiration at night modeled by the temperature-flux relationships, but not documented by daytime chamber measurements. CO2 uptake by ground-cover plants ranged from 0 at the clear-cut site to 29, 25, and 9% of total growing season soil respiration at the 8-year, 20-year, and mature stands. CO2 concentrations were as great as 7150 ppmv in the upper 1 m of unsaturated zone and were proportional to measured soil respiration.


2014 ◽  
Vol 11 (9) ◽  
pp. 12937-12983 ◽  
Author(s):  
T. M. Munir ◽  
M. Perkins ◽  
E. Kaing ◽  
M. Strack

Abstract. Mid-latitude treed bogs are significant carbon (C) stocks and are highly sensitive to global climate change. In a dry continental treed bog, we compared three sites; control, recent (1–3 years; experimental) and older drained (10–13 years; drained) with water levels at 38, 74 and 120 cm below the surface, respectively. At each site we measured carbon dioxide (CO2) fluxes and tree root respiration (Rr) (across hummock-hollow microtopography of the forest floor) and net primary production (NPP) of trees during the growing seasons (May to October) of 2011–2013. The carbon (C) balance was calculated by adding net CO2 exchange of the forest floor (NEff–Rr) to the NPP of the trees. From cooler and wetter 2011 to driest and warmest 2013, The control site was a~C sink of 92, 70 and 76 g m−2, experimental site was a C source of 14, 57 and 135 g m−2, and drained site was a progressively smaller source of 26, 23 and 13 g m−2, respectively. Although all microforms at the experimental site had large net CO2 emissions, the longer-term drainage and deeper water level at the drained site resulted in the replacement of mosses with vascular plants (shrubs) at the hummocks and lichens at the hollows leading to the highest CO2 uptake at drained hummocks and significant losses at hollows. The tree NPP was highest at the drained site. We also quantified the impact of climatic warming at all water table treatments by equipping additional plots with open-top chambers (OTCs) that caused a passive warming on average of ∼1 °C and differential air warming of ∼6 °C (at mid-day full sun) across the study years. Warming significantly enhanced the shrub growth and CO2 sink function of the drained hummocks (exceeding the cumulative respiration losses at hollows induced by the lowered water level × warming). There was an interaction of water level with warming across hummocks that resulted in largest net CO2 uptake at warmed drained hummocks. Thus in 2013, the warming treatment enhanced the sink function of control by 13 g m−2, reduced the source function of experimental by 10 g m−2, and significantly enhanced the sink function of the drained site by 73 g m−2. Therefore, drying and warming in continental bogs is expected to initially accelerate C losses via respiration but persistent drought and warming is expected to restore the peatland's original C sink function as a result of transitional shift of vegetation between the microforms and increased NPP of trees over time.


2013 ◽  
Vol 6 (3) ◽  
pp. 4883-4932 ◽  
Author(s):  
S. Yi ◽  
K. Wischnewski ◽  
M. Langer ◽  
S. Muster ◽  
J. Boike

Abstract. Freeze/thaw (F/T) processes can be quite different under the various land surface types found in the heterogeneous polygonal tundra of the Arctic. Proper simulation of these different processes is essential for accurate prediction of the release of greenhouse gases under a warming climate scenario. In this study we have modified the dynamic organic soil version of the Terrestrial Ecosystem Model (DOS-TEM) to simulate F/T processes beneath the polygon rims, polygon centers (with and without water), and lakes that are common features in Arctic lowland regions. We first verified the F/T algorithm in the DOS-TEM against analytical solutions, and then compared the results with in situ measurements from Samoylov Island, Siberia. In the final stage, we examined the different responses of the F/T processes for different water levels at the various land surface types. The simulations revealed that (1) the DOS-TEM was very efficient and its results compared very well with analytical solutions for idealized cases, (2) the simulations compared reasonably well with in situ measurements although there were a number of model limitations and uncertainties, (3) the DOS-TEM was able to successfully simulate the differences in F/T dynamics under different land surface types, and (4) permafrost beneath water bodies was found to respond highly sensitive to changes in water depths between 1 and 2 m. Our results indicate that water is very important in the thermal processes simulated by the DOS-TEM; the heterogeneous nature of the landscape and different water depths therefore need to be taken into account when simulating methane emission responses to a warming climate.


2017 ◽  
Vol 4 (3) ◽  
pp. 43-49
Author(s):  
M. Miroshnychenko ◽  
O. Siabruk

Aim. The comparison of the effect of hydrothermal conditions and various agricultural practices on the emission of CO 2 from chernozems in the Left-Bank Forest-Steppe of Ukraine. Methods. The dynamics of the intensity of carbon dioxide emissions from chernozem calcic (typical chernozem – in Ukrainian classifi cation) was studied during the growing season of 2011–2012. The observations were based on two fi eld experiments with various methods of soil till- age (6–7 years from the beginning of the experiment) and fertilization systems (21–22 years from the beginning of the experiment). Particularly, plowing at 20–22 cm, disking at 10–12 cm, cultivation at 6–8 cm and direct seeding using Great Plains drill were studied among the soil tillage methods. Mineral system (N 45 P 50 K 45 ), organic system (manure 8 t/ha) and combined organic-mineral system (manure 8 t/ha + N 45 P 50 K 45 ) were studied among fertilization systems. The intensity of CO 2 fl ux was determined using the non-stationary respiratory chambers by the alkaline absorption method, with averaging of the results during the day and the frequency of once a month. Results. During the warm period, the emission of carbon dioxide from the soil changes dynamically depending on temperature and humidity. The maximum of emission coincides with the periods of warm summer showers in June-July, the minimum values are characteristic for the late autumn period. The total emission losses of carbon in chernozems over the vegetation period ranged from 480 to 910 kg/ha and varied depending on the methods of tillage ± (4.0–6.0) % and fertilization systems ± (3.8–7.1) %. The changes in the intensity of CO 2 emission from the soil under different methods of soil tillage are associated with hydrothermal regime and the depth of crop residues location. The biggest difference is observed im- mediately after tillage, but in the spring period the differences are only 12–25 %, and after drying of the top layer of soil become even less. Direct seeding technology provides the greatest emission of CO 2 from chernozem, which is fa- cilitated by better water regime and more complete mineralization of plant residues on the soil surface. Annual losses of carbon are the least under disking of soil at 10–12 cm. The changes in the intensity of CO 2 emission from the soil under different fertilization systems are associated with the involvement of the additional organic matter from plant residues and manure to the microbiological decomposition. The greatest emission was observed under the organic- mineral fertilization system, which increased the loss of carbon by 7–8 % in comparison with the mineral system in the unfavorable hydrothermal year and by 11–15 % in the more favorable year. These differences are observed mainly during the fi rst half of the growing season when there is a clear tendency to increase the intensity of soil respiration. Conclusions. The hydrothermal conditions of the warm period of the year are decisive in the formation of the CO 2 emission fl ow from chernozems. Due to the improvement of agricultural practices, emissions might be reduced but not more that by 15 % of natural factor contribution.


2017 ◽  
Vol 37 (14) ◽  
pp. 4757-4767 ◽  
Author(s):  
Cunbo Han ◽  
Yaoming Ma ◽  
Xuelong Chen ◽  
Zhongbo Su

2007 ◽  
Vol 4 (6) ◽  
pp. 985-1003 ◽  
Author(s):  
M. K. van der Molen ◽  
J. van Huissteden ◽  
F. J. W. Parmentier ◽  
A. M. R. Petrescu ◽  
A. J. Dolman ◽  
...  

Abstract. Carbon dioxide and methane fluxes were measured at a tundra site near Chokurdakh, in the lowlands of the Indigirka river in north-east Siberia. This site is one of the few stations on Russian tundra and it is different from most other tundra flux stations in its continentality. A suite of methods was applied to determine the fluxes of NEE, GPP, Reco and methane, including eddy covariance, chambers and leaf cuvettes. Net carbon dioxide fluxes were high compared with other tundra sites, with NEE=−92 g C m−2 yr−1, which is composed of an Reco=+141 g C m−2 yr−1 and GPP=−232 g C m−2 yr−1. This large carbon dioxide sink may be explained by the continental climate, that is reflected in low winter soil temperatures (−14°C), reducing the respiration rates, and short, relatively warm summers, stimulating high photosynthesis rates. Interannual variability in GPP was dominated by the frequency of light limitation (Rg<200 W m−2), whereas Reco depends most directly on soil temperature and time in the growing season, which serves as a proxy of the combined effects of active layer depth, leaf area index, soil moisture and substrate availability. The methane flux, in units of global warming potential, was +28 g C-CO2e m−2 yr−1, so that the greenhouse gas balance was −64 g C-CO2e m−2 yr−1. Methane fluxes depended only slightly on soil temperature and were highly sensitive to hydrological conditions and vegetation composition.


Sign in / Sign up

Export Citation Format

Share Document