Performance and microbial community profiles in pilot-scale biofilter for ammonia, iron and manganese removal at different dissolved oxygen concentrations

Author(s):  
Qingfeng Cheng ◽  
Yang Huang ◽  
Lichao Nengzi ◽  
Jianying Liu ◽  
Jie Zhang
2015 ◽  
Vol 16 (3) ◽  
pp. 766-774 ◽  
Author(s):  
Qingfeng Cheng

In this study, the competitive mechanism of ammonia, iron and manganese for dissolved oxygen (DO) in a biofilter was investigated, and a new start-up method of a biofilter for ammonia, iron and manganese removal was approved, which can effectively shorten the start-up period from 3–4 months to 51 days. The results demonstrated that when DO was sufficient (about 8 mg · L−1), ammonia, iron and manganese could be completely removed. When DO decreased from 6.5 to 4 mg · L−1, the concentration of ammonia in the effluent increased accordingly, though iron and manganese were removed efficiently. When DO was as low as 3 mg · L−1, only iron was removed, whereas most of the ammonia and manganese still existed in the effluent. In addition, the oxidizing rates of the pollutants were not affected significantly with DO decrease. Turbidity removal in the biofilter was also investigated, and the results demonstrated that the turbidity decreased to less than 0.5 NTU at 0.4 m depth of the filter.


Author(s):  
Yingming Guo ◽  
Ben Ma ◽  
Jianxiong Huang ◽  
Jing Yang ◽  
Ruifeng Zhang

Abstract The iron and manganese oxide filter film (MeOx) were used to research the simultaneous removal of bisphenol A (BPA), manganese (Mn2+) and ammonium (NH4+) in a pilot-scale filter system. We found that 0.52 mg/L of BPA could be removed while consuming 5.44 mg/L of dissolved oxygen (DO). Since the oxidation process of NH4+ and BPA both consume the DO in water, the presence of NH4+ can hinder the removal of BPA. The presence of Mn2+ in water had a synergy effect on the BPA removal. The filter film was characterized by SEM, XRD and XPS. Some substances were generated to block the pores of the oxide film, and a small amount of film was found to crack and fall off. The elemental composition of C and O were both increased by about 9%, the composition of Mn was decreased from 63.48% to 44.55%, and the reduced manganese substance might affect the activity of the oxide film. The main chemical forms of MeOx are Mn6O12·3H2O, MnFe2O4 or Mn3O4. The decrease in the removal efficiency of BPA was mainly due to the C-containing intermediate [−CH2C − H(OH)]n covering the surface of the oxide film and blocking the pore size of the film.


2017 ◽  
Vol 66 (3) ◽  
pp. 157-165 ◽  
Author(s):  
Qingfeng Cheng ◽  
Lichao Nengzi ◽  
Linlin Bao ◽  
Yijing Wang ◽  
Jianxing Yang ◽  
...  

Chemosphere ◽  
2015 ◽  
Vol 138 ◽  
pp. 47-59 ◽  
Author(s):  
Katja Sonja Nitzsche ◽  
Pascal Weigold ◽  
Tina Lösekann-Behrens ◽  
Andreas Kappler ◽  
Sebastian Behrens

1988 ◽  
Vol 23 (4) ◽  
pp. 568-577
Author(s):  
Harold S. Bailey

Abstract The water quality of the upper 110 kilometres of the St. Croix River is considered to be pristine. A major industrial discharge renders the lower 14 kilometres of the river a water quality limited segment. Prior to 1970 the Georgia-Pacific Pulp and Paper Mill at Woodland, Maine, discharged untreated effluent directly into the river causing dissolved oxygen concentrations to drop well below 5 mg/L, the objective chosen in the interest of restoring endemic fish populations. Since 1972, the Mill has installed primary and secondary treatment, regulated river discharge rate and effluent composition which has greatly improved the summer dissolved oxygen regime. By 1980, dissolved oxygen concentrations were generally above 5.0 mg/L and restocking the river with Atlantic Salmon (Salmo salar) was initiated.


Sign in / Sign up

Export Citation Format

Share Document