scholarly journals A bioprocess perspective on the production of secondary metabolites by Streptomyces in submerged co-cultures

Author(s):  
Tomasz Boruta

AbstractFilamentous microorganisms are potent sources of bioactive secondary metabolites, the molecules formed in response to complex environmental signals. The chemical diversity encoded in microbial genomes is only partially revealed by following the standard microbiological approaches. Mimicking the natural stimuli through laboratory co-cultivation is one of the most effective methods of awakening the formation of high-value metabolic products. Whereas the biosynthetic outcomes of co-cultures are reviewed extensively, the bioprocess aspects of such efforts are often overlooked. The aim of the present review is to discuss the submerged co-cultivation strategies used for triggering and enhancing secondary metabolites production in Streptomyces, a heavily investigated bacterial genus exhibiting an impressive repertoire of secondary metabolites, including a vast array of antibiotics. The previously published studies on influencing the biosynthetic capabilities of Streptomyces through co-cultivation are comparatively analyzed in the bioprocess perspective, mainly with the focus on the approaches of co-culture initiation, the experimental setup, the design of experimental controls and the ways of influencing the outcomes of co-cultivation processes. These topics are discussed in the general context of secondary metabolites production in submerged microbial co-cultures by referring to the Streptomyces-related studies as illustrative examples.

Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 853 ◽  
Author(s):  
Mei-Mei Cheng ◽  
Xu-Li Tang ◽  
Yan-Ting Sun ◽  
Dong-Yang Song ◽  
Yu-Jing Cheng ◽  
...  

Marine sponges are well known as rich sources of biologically natural products. Growing evidence indicates that sponges harbor a wealth of microorganisms in their bodies, which are likely to be the true producers of bioactive secondary metabolites. In order to promote the study of natural product chemistry and explore the relationship between microorganisms and their sponge hosts, in this review, we give a comprehensive overview of the structures, sources, and activities of the 774 new marine natural products from sponge-derived microorganisms described over the last two decades from 1998 to 2017.


Planta Medica ◽  
2020 ◽  
Vol 86 (12) ◽  
pp. 805-821 ◽  
Author(s):  
Xiu-Qi Li ◽  
Kuo Xu ◽  
Xin-Min Liu ◽  
Peng Zhang

AbstractFungi are well known for their ability to synthesize secondary metabolites, which have proven to be a rich resource for exploring lead compounds with medicinal and/or agricultural importance. The genera Aspergillus, Penicillium, and Talaromyces are the most widely studied fungal groups, from which a plethora of bioactive metabolites have been characterized. However, relatively little attention has been paid to the genus Paecilomyces, which has been reported to possess great potential for its application as a biocontrol agent. Meanwhile, a wide structural array of metabolites with attractive bioactivities has been reported from this genus. This review attempts to provide a comprehensive overview of Paecilomyces species, with emphasis on the chemical diversity and relevant biological activities of these metabolic products. Herein, a total of 148 compounds and 80 references are cited in this review, which is expected to be beneficial for the development of medicines and agrochemicals in the near future.


Toxins ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 457 ◽  
Author(s):  
Maria Michela Salvatore ◽  
Artur Alves ◽  
Anna Andolfi

Lasiodiplodia theobromae is a plant pathogenic fungus from the family Botryosphaeriaceae that is commonly found in tropical and subtropical regions. It has been associated with many hosts, causing diverse diseases and being responsible for serious damages on economically important crops. A diverse array of bioactive low molecular weight compounds has been described as being produced by L. theobromae cultures. In this review, the existing literature on secondary metabolites of L. theobromae, their bioactivity, and the implications of their occurrence are compiled. Moreover, the effects of abiotic factors (e.g., temperature, nutrient availability) on secondary metabolites production are highlighted, and possible avenues for future research are presented. Currently, a total of 134 chemically defined compounds belonging to the classes of secondary metabolites and fatty acids have been reported from over 30 L. theobromae isolates. Compounds reported include cyclohexenes and cyclohexenones, indoles, jasmonates, lactones, melleins, phenols, and others. Most of the existing bioactivity studies of L. theobromae metabolites have assessed their potential phytotoxic, cytotoxic, and antimicrobial activities. In fact, its host adaptability and its ability to cause diseases in plants as well as in humans may be related to the capacity to produce bioactive compounds directly involved in host–fungus interactions.


Planta Medica ◽  
2013 ◽  
Vol 79 (10) ◽  
Author(s):  
LG Malak ◽  
DW Bishay ◽  
AM Abdel-baky ◽  
AM Moharram ◽  
SJ Cutler ◽  
...  

Planta Medica ◽  
2015 ◽  
Vol 81 (11) ◽  
Author(s):  
JJ Araya ◽  
M Chavarría ◽  
A Pinto-Tomás ◽  
C Murillo ◽  
L Uribe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document