IRH-OF: A New Objective Function for RPL Routing Protocol in IoT Applications

Author(s):  
Abdelhadi Eloudrhiri Hassani ◽  
Aicha Sahel ◽  
Abdelmajid Badri
Author(s):  
V. C. Diniesh ◽  
G. Murugesan ◽  
M. Joseph Auxilius Jude ◽  
A. Harshini ◽  
S. Bhavataarani ◽  
...  

2022 ◽  
Vol 16 (1) ◽  
pp. 0-0

This paper presents a proposed Objective Function (OF) design using various routing metrics for improving the performance of IoT applications. The most important idea of the proposed design is the selection of the routing metrics with respect to the application requirements. The various metrics, such as Energy, Distance, Delay, Link quality, Trust (EDDLT) are used for improving the objective function design of the RPL in various IoT applications. Here, the Adaptive Deep rider LSTM is newly employed for the energy prediction where the Adaptive Deep Rider LSTM is devised by the combination of the adaptive theory with the Rider Adam Algorithm (RAA), and the Deep-Long Short Memory (Deep-LSTM). However, the evaluation of the proposed method is carried out energy dissipation, throughput, and delay by achieving a minimum energy dissipation of 0.549, maximum throughput of 1, and a minimum delay of 0.191, respectively.


2019 ◽  
Vol 8 (4) ◽  
pp. 8972-8977 ◽  

Internet of Things, abbreviated as IoT is a network used mainly for the communication where different devices are connected for the retrieval, examination and execution of the necessary task. One of IoT’s biggest challenge is that, they are resource-constrained. Hence, it is essential to use an efficient data transmission protocol for routing. An effective routing protocol for static IoT network is the Routing protocol for Low Power and Lossy Networks (RPL). It is essential to assess the effectiveness of the RPL with the selection of best objective function for different static model. In this paper, the performance of different routing algorithms is compared in connection with different static topologies. Hence, the objective function’s performance is compared for different topologies i.e., Butterfly, Ring and Umbrella topologies. We consider two objective functions: namely Minimum Rank with Hysteresis Objective Function (MRHOF) and Objective Function Zero (OF0). MRHOF considers Expected Transmission Count (ETX) as its metric and the metric considered under OF0 is hop count. It is observed that the objective function OF0 performs better than MRHOF for the metric of energy and successful receiving of data.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 243 ◽  
Author(s):  
Yuxin Mao ◽  
Chenqian Zhou ◽  
Yun Ling ◽  
Jaime Lloret

Many applications of Internet of Things (IoT) have been implemented based on unreliable wireless or mobile networks like the delay tolerant network (DTN). Therefore, it is an important issue for IoT applications to achieve efficient data transmission in DTN. In order to improve delivery rate and optimize delivery delay with low overhead in DTN for IoT applications, we propose a new routing protocol, called Scheduling-Probabilistic Routing Protocol using History of Encounters and Transitivity (PROPHET). In this protocol, we calculate the delivery predictability according to the encountering frequency among nodes. Two scheduling mechanisms are proposed to extend the traditional PROPHET protocol and improve performance in both storage and transmission in DTN. In order to evaluate the proposed routing protocol, we perform simulations and compare it with other routing protocols in an Opportunistic Network Environment (ONE) simulator. The results demonstrate that the proposed Scheduling-PROPHET can achieve better performances in several key aspects compared with the existing protocols.


Author(s):  
Abdelhadi Eloudrhiri Hassani ◽  
Aicha Sahel ◽  
Abdelmajid Badri ◽  
El Mourabit Ilham

The internet of things technology is classified as a Low power and lossy network. These kinds of networks require a trustworthy routing protocol considered as the backbone for management and high quality of service achievements. IPv6 routing protocol for Low power and lossy network (RPL) was able to gain popularity compared to other routing protocols dedicated to IoT for its great flexibility through the objective function. Default objective functions implemented in the RPL core are based on a single metric. Consequently, the routing protocol can’t cope with different constraints and show congestion issues in high traffics. For that, we proposed in our paper multi-constraints-based objective function with adaptive stability (MCAS-OF), which uses novel strategies for Radio strength indicator, node energy consumption, hop count and a designed work-metric combination, new rank processing, and parent selection procedure. The network stability was also taken into account, since the multi constraints can lead to frequent parent changes, using an adaptive threshold. The proposal, evaluated under the COOJA emulator against standard-RPL and EC-OF, showed a packet delivery ratio improvement by 24% in high traffics, a decrease in the power consumption close to 44%, achieved less latency and DIO control messages, it also gives a good workload balancing by reducing the standard deviation of node’s power consumption.


2019 ◽  
Author(s):  
Vinícius De Figueiredo Marques ◽  
Janine Kniess

Low Power and Lossy Networks (LLNs) is a common type of wireless network in IoT applications. LLN communication patterns usually requires an efficient routing protocol. The IPv6 Routing Protocol for Low-Power and Lossy Network (RPL) is considered to be a possible standard routing protocol for LLNs. However, RPL was developed for static networks and node mobility decreases RPL overall performance. These are the purposes of the Mobility Aware RPL (MARPL), presented in this paper. MARPL provides a mobility detection mechanism based on neighbor variability. Performance evaluation results on the Cooja Simulator confirm the effectiveness of MARPL regarding link disconnection prevention, packet delivery rate and fast mobile node topology reconnection with low overhead impact when compared to other protocols.


Sign in / Sign up

Export Citation Format

Share Document