scholarly journals Erratum to: Habitat selection of the Ortolan bunting Emberiza hortulana in Poland: predictions from large-scale habitat elements

2012 ◽  
Vol 27 (2) ◽  
pp. 357-357 ◽  
Author(s):  
Jakub Z. Kosicki ◽  
Przemysław Chylarecki
Ornis Svecica ◽  
2016 ◽  
Vol 26 (2) ◽  
pp. 89-103
Author(s):  
Julianna Anne Percival ◽  
Svein Dale

Ortolan Buntings Emberiza hortulana in Sweden used to occur mainly in farmland. Nowadays, a large proportion of the remaining population is found on forest clear-cuts in northern Sweden. Few studies have identified the types of clear-cuts that Ortolan Buntings prefer and whether these habitats are used for both breeding and foraging. We recorded presence and abundance of ortolan buntings on clear-cuts in Västerbotten County, northern Sweden. We sampled 123 clear-cuts (present N = 48, absent N = 75; total of 93–100 territories) and our results showed that clear-cut size, the number of remaining trees, bare soil percentage (≥10%) and narrow-leaved grass vegetation had a positive influence on ortolan bunting occupancy. The number of territories on clear-cuts was positively related to clear-cut size and number of remaining trees. Proximity to nearby farmland did not influence occupancy on clear-cuts. Behavioural observations indicated that the forest clear-cuts were used for both nesting and feeding. We discuss these results in relation to forest management policies and conservation of the ortolan bunting.


2010 ◽  
Vol 88 (5) ◽  
pp. 436-447 ◽  
Author(s):  
N. J. Singh ◽  
N. G. Yoccoz ◽  
N. Lecomte ◽  
S. D. Côté ◽  
J. L. Fox

Processes of habitat selection occur at multiple spatiotemporal scales, where large-scale selection is often determined by predation risk and landscape features, and finer scale selection by resource abundance and quality. To determine whether this hierarchy exists in relatively homogenous systems, we investigated patterns of habitat (landscape topography) and resource (feeding patch and plant group) selection by a medium-sized ungulate, the Tibetan argali ( Ovis ammon hodgsoni Blyth, 1840), in the high-altitude rangelands of the Indian Trans-Himalaya. We ran ecological niche factor analyses to explore habitat selection, bias-reduced logistic regression to analyze the selection of feeding patches, fuzzy correspondence analysis for vegetation categories, and microhistological analyses for the selection of plant groups. For springs and summers of 2005–2007, argali preferred an intermediate range of altitude, slope, and forage abundance. Selection of feeding patch was mainly determined by forage quality, not biomass, selecting graminoids and forbs, in particular. The avoidance of habitat with high forage abundance could indicate a trade-off between forage quality and quantity; a pattern consistent at the feeding-patch scale. Our results provide evidence that the hierarchical pattern of habitat selection probably also occurs in relatively homogeneous systems.


1996 ◽  
Vol 76 (06) ◽  
pp. 0939-0943 ◽  
Author(s):  
B Boneu ◽  
G Destelle ◽  

SummaryThe anti-aggregating activity of five rising doses of clopidogrel has been compared to that of ticlopidine in atherosclerotic patients. The aim of this study was to determine the dose of clopidogrel which should be tested in a large scale clinical trial of secondary prevention of ischemic events in patients suffering from vascular manifestations of atherosclerosis [CAPRIE (Clopidogrel vs Aspirin in Patients at Risk of Ischemic Events) trial]. A multicenter study involving 9 haematological laboratories and 29 clinical centers was set up. One hundred and fifty ambulatory patients were randomized into one of the seven following groups: clopidogrel at doses of 10, 25, 50,75 or 100 mg OD, ticlopidine 250 mg BID or placebo. ADP and collagen-induced platelet aggregation tests were performed before starting treatment and after 7 and 28 days. Bleeding time was performed on days 0 and 28. Patients were seen on days 0, 7 and 28 to check the clinical and biological tolerability of the treatment. Clopidogrel exerted a dose-related inhibition of ADP-induced platelet aggregation and bleeding time prolongation. In the presence of ADP (5 \lM) this inhibition ranged between 29% and 44% in comparison to pretreatment values. The bleeding times were prolonged by 1.5 to 1.7 times. These effects were non significantly different from those produced by ticlopidine. The clinical tolerability was good or fair in 97.5% of the patients. No haematological adverse events were recorded. These results allowed the selection of 75 mg once a day to evaluate and compare the antithrombotic activity of clopidogrel to that of aspirin in the CAPRIE trial.


2003 ◽  
Vol 9 (1) ◽  
pp. 141-153 ◽  
Author(s):  
Mayumi Sakuragi ◽  
Hiromasa Igota ◽  
Hiroyuki Uno ◽  
Koichi Kaji ◽  
Masami Kaneko ◽  
...  

Paléorient ◽  
1981 ◽  
Vol 7 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Amiel Brosh ◽  
M. Ohel

2021 ◽  
Vol 13 (6) ◽  
pp. 3571
Author(s):  
Bogusz Wiśnicki ◽  
Dorota Dybkowska-Stefek ◽  
Justyna Relisko-Rybak ◽  
Łukasz Kolanda

The paper responds to research problems related to the implementation of large-scale investment projects in waterways in Europe. As part of design and construction works, it is necessary to indicate river ports that play a major role within the European transport network as intermodal nodes. This entails a number of challenges, the cardinal one being the optimal selection of port locations, taking into account the new transport, economic, and geopolitical situation that will be brought about by modernized waterways. The aim of the paper was to present an original methodology for determining port locations for modernized waterways based on non-cost criteria, as an extended multicriteria decision-making method (MCDM) and employing GIS (Geographic Information System)-based tools for spatial analysis. The methodology was designed to be applicable to the varying conditions of a river’s hydroengineering structures (free-flowing river, canalized river, and canals) and adjustable to the requirements posed by intermodal supply chains. The method was applied to study the Odra River Waterway, which allowed the formulation of recommendations regarding the application of the method in the case of different river sections at every stage of the research process.


2021 ◽  
Vol 22 (15) ◽  
pp. 7773
Author(s):  
Neann Mathai ◽  
Conrad Stork ◽  
Johannes Kirchmair

Experimental screening of large sets of compounds against macromolecular targets is a key strategy to identify novel bioactivities. However, large-scale screening requires substantial experimental resources and is time-consuming and challenging. Therefore, small to medium-sized compound libraries with a high chance of producing genuine hits on an arbitrary protein of interest would be of great value to fields related to early drug discovery, in particular biochemical and cell research. Here, we present a computational approach that incorporates drug-likeness, predicted bioactivities, biological space coverage, and target novelty, to generate optimized compound libraries with maximized chances of producing genuine hits for a wide range of proteins. The computational approach evaluates drug-likeness with a set of established rules, predicts bioactivities with a validated, similarity-based approach, and optimizes the composition of small sets of compounds towards maximum target coverage and novelty. We found that, in comparison to the random selection of compounds for a library, our approach generates substantially improved compound sets. Quantified as the “fitness” of compound libraries, the calculated improvements ranged from +60% (for a library of 15,000 compounds) to +184% (for a library of 1000 compounds). The best of the optimized compound libraries prepared in this work are available for download as a dataset bundle (“BonMOLière”).


2021 ◽  
Vol 13 (11) ◽  
pp. 2074
Author(s):  
Ryan R. Reisinger ◽  
Ari S. Friedlaender ◽  
Alexandre N. Zerbini ◽  
Daniel M. Palacios ◽  
Virginia Andrews-Goff ◽  
...  

Machine learning algorithms are often used to model and predict animal habitat selection—the relationships between animal occurrences and habitat characteristics. For broadly distributed species, habitat selection often varies among populations and regions; thus, it would seem preferable to fit region- or population-specific models of habitat selection for more accurate inference and prediction, rather than fitting large-scale models using pooled data. However, where the aim is to make range-wide predictions, including areas for which there are no existing data or models of habitat selection, how can regional models best be combined? We propose that ensemble approaches commonly used to combine different algorithms for a single region can be reframed, treating regional habitat selection models as the candidate models. By doing so, we can incorporate regional variation when fitting predictive models of animal habitat selection across large ranges. We test this approach using satellite telemetry data from 168 humpback whales across five geographic regions in the Southern Ocean. Using random forests, we fitted a large-scale model relating humpback whale locations, versus background locations, to 10 environmental covariates, and made a circumpolar prediction of humpback whale habitat selection. We also fitted five regional models, the predictions of which we used as input features for four ensemble approaches: an unweighted ensemble, an ensemble weighted by environmental similarity in each cell, stacked generalization, and a hybrid approach wherein the environmental covariates and regional predictions were used as input features in a new model. We tested the predictive performance of these approaches on an independent validation dataset of humpback whale sightings and whaling catches. These multiregional ensemble approaches resulted in models with higher predictive performance than the circumpolar naive model. These approaches can be used to incorporate regional variation in animal habitat selection when fitting range-wide predictive models using machine learning algorithms. This can yield more accurate predictions across regions or populations of animals that may show variation in habitat selection.


Sign in / Sign up

Export Citation Format

Share Document