A reference high-density genetic map of Theobroma grandiflorum (Willd. ex Spreng) and QTL detection for resistance to witches’ broom disease (Moniliophthora perniciosa)

2020 ◽  
Vol 16 (6) ◽  
Author(s):  
Pierre Mournet ◽  
Paulo Sérgio Beviláqua de Albuquerque ◽  
Rafael Moysés Alves ◽  
Joseilde Oliveira Silva-Werneck ◽  
Ronan Rivallan ◽  
...  
BMC Genomics ◽  
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Iftikhar Ali ◽  
Zhonghua Teng ◽  
Yuting Bai ◽  
Qing Yang ◽  
Yongshui Hao ◽  
...  

2020 ◽  
Author(s):  
Yaohua Li ◽  
Tong Mo ◽  
Lingfang Ran ◽  
Jianyan Zeng ◽  
Chuannan Wang ◽  
...  

Abstract Background: Asiatic cotton (Gossypium arboreum, genome A2) is one of diploid cotton species producing spinnable fibers. However, few studies on the genetic mechanism of key fiber traits of Asiatic cotton have been reported. Sequencing technology advancement and the release of Asiatic cotton genome made it possible to construct a high-density SNP genetic map and further untapped QTL detection.Results: The Asiatic cotton cultivars SXY No.1 and CSLZ were crossed to develop a recombinant inbred line (RIL) population with 189 lines. Whole genome resequencing technology was employed to construct a high-density genetic map that covered 1980.17 cM with an average distance of 0.61 cM between adjacent markers. Based on fiber quality and yield component trait data from three environments, a total of 177 QTL were identified for 8 key fiber traits explaining 5.0-37.4% of the phenotypic variance. Besides, 48 stable QTL, including 15 for upper quartile length (UQL), 18 for fiber fineness (FF), 1 for immature fiber content (IFC), 4 for fiber neps count (FNC), 3 for lint percentage (LP), 7 for seed index (SI), were detected in more than one environment.Conclusions: Using a RIL population and whole genome resequencing strategy, this study presented a high-density genetic map of G. arboreum and identified 48 stable QTL for 6 key fiber traits (UQL, FF, IFC, FNC, LP, SI). Our work laid solid foundation for subsequent fine mapping of QTL for key fiber traits and cloning of controlling genes.


2015 ◽  
Vol 41 (10) ◽  
pp. 1510 ◽  
Author(s):  
Wei-Wei QIN ◽  
Yong-Xiang LI ◽  
Chun-Hui LI ◽  
Lin CHEN ◽  
Xun WU ◽  
...  
Keyword(s):  

2021 ◽  
Vol 22 (11) ◽  
pp. 5723
Author(s):  
Yuan-Yuan Xu ◽  
Sheng-Rui Liu ◽  
Zhi-Meng Gan ◽  
Ren-Fang Zeng ◽  
Jin-Zhi Zhang ◽  
...  

A high-density genetic linkage map is essential for genetic and genomic studies including QTL mapping, genome assembly, and comparative genomic analysis. Here, we constructed a citrus high-density linkage map using SSR and SNP markers, which are evenly distributed across the citrus genome. The integrated linkage map contains 4163 markers with an average distance of 1.12 cM. The female and male linkage maps contain 1478 and 2976 markers with genetic lengths of 1093.90 cM and 1227.03 cM, respectively. Meanwhile, a genetic map comparison demonstrates that the linear order of common markers is highly conserved between the clementine mandarin and Poncirus trifoliata. Based on this high-density integrated citrus genetic map and two years of deciduous phenotypic data, two loci conferring leaf abscission phenotypic variation were detected on scaffold 1 (including 36 genes) and scaffold 8 (including 107 genes) using association analysis. Moreover, the expression patterns of 30 candidate genes were investigated under cold stress conditions because cold temperature is closely linked with the deciduous trait. The developed high-density genetic map will facilitate QTL mapping and genomic studies, and the localization of the leaf abscission deciduous trait will be valuable for understanding the mechanism of this deciduous trait and citrus breeding.


Euphytica ◽  
2021 ◽  
Vol 217 (8) ◽  
Author(s):  
Peng Jin ◽  
Lihua Wang ◽  
Wenjie Zhao ◽  
Jian Zheng ◽  
Yi-Hong Wang ◽  
...  

2017 ◽  
Vol 8 ◽  
Author(s):  
Elise A. R. Serin ◽  
L. B. Snoek ◽  
Harm Nijveen ◽  
Leo A. J. Willems ◽  
Jose M. Jiménez-Gómez ◽  
...  

2018 ◽  
Vol 19 (10) ◽  
pp. 3140 ◽  
Author(s):  
Chenggang Xiang ◽  
Ying Duan ◽  
Hongbo Li ◽  
Wei Ma ◽  
Sanwen Huang ◽  
...  

As one of the earliest domesticated species, Cucurbita pepo (including squash and pumpkin) is rich in phenotypic polymorphism and has huge economic value. In this research, using 1660 expressed sequence tags-simple sequence repeats (EST-SSRs) and 632 genomic simple sequence repeats (gSSRs), we constructed the highest-density EST-SSR-based genetic map in Cucurbita genus, which spanned 2199.1 cM in total and harbored 623 loci distributed in 20 linkage groups. Using this map as a bridge, the two previous gSSR maps were integrated by common gSSRs and the corresponding relationships around chromosomes in three sets of genomes were also collated. Meanwhile, one large segmental inversion that existed between our map and the C. pepo genome was detected. Furthermore, three Quantitative Trait Loci (QTLs) of the dwarf trait (gibberellin-sensitive dwarf type) in C. pepo were located, and the candidate region that covered the major QTL spanned 1.39 Mb, which harbored a predicted gibberellin 2-β-oxidase gene. Considering the rich phenotypic polymorphism, the important economic value in the Cucurbita genus species and several advantages of the SSR marker were identified; thus, this high-density EST-SSR-based genetic map will be useful in Pumpkin and Squash breeding work in the future.


Sign in / Sign up

Export Citation Format

Share Document