Temperature Dependent Viscoelastic Properties of Polymers Investigated by Small-Scale Dynamic Mechanical Analysis

2009 ◽  
Vol 50 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Y. C. Lu ◽  
D. M. Shinozaki
Author(s):  
Roja Esmaeeli ◽  
Ashkan Nazari ◽  
Haniph Aliniagerdroudbari ◽  
Seyed Reza Hashemi ◽  
Muapper Alhadri ◽  
...  

The viscoelastic properties of rubbers play an important role in dynamic applications and are commonly measured and quantified by means of Dynamic Mechanical Analysis (DMA) tests. The rubber properties including the static and dynamic moduli are a function of temperature; and an increase in the temperature leads to a decrease in both moduli of the rubber. Due to the heat generation inside the rubber during the DMA test and the possible change of the rubber properties it is important to quantify the amount of temperature rise in the rubber specimen during the test. In this study, a Finite Element Analysis (FEA) model is used to predict the heat generation and temperature rise during the rubber DMA tests. This model is used to identify the best shape of the specimen to achieve the minimum increase in temperature during the test. The double sandwich shear test and the cyclic compression tests are considered in this study because these two tests are mostly used in industry to predict the rubber viscoelastic properties.


2007 ◽  
Vol 82A (3) ◽  
pp. 530-537 ◽  
Author(s):  
Yener N. Yeni ◽  
Richard R. Shaffer ◽  
Kevin C. Baker ◽  
X. Neil Dong ◽  
Michele J. Grimm ◽  
...  

2017 ◽  
Vol 118 (15) ◽  
Author(s):  
Xiaoyue Ni ◽  
Stefanos Papanikolaou ◽  
Gabriele Vajente ◽  
Rana X Adhikari ◽  
Julia R. Greer

Author(s):  
Jing Qiao ◽  
Alireza V. Amirkhizi ◽  
Kristin Schaaf ◽  
Sia Nemat-Nasser

In this work, the material properties of a series of fly ash/polyurea composites were studied. Dynamic mechanical analysis was conducted to study the effect of the fly ash volume fraction on the composite’s mechanical properties, i.e., on the material’s frequency- and temperature-dependent storage and loss moduli. It was found that the storage and loss moduli of the composite both increase as the fly ash volume fraction is increased. The storage and loss moduli of the composites relative to those of pure polyurea initially increase significantly with temperature and then slightly decrease or stay flat, attaining peak values around the glass transition region. The glass transition temperature (measured as the temperature at the maximum value of the loss modulus) shifted toward higher temperatures as the fly ash volume fraction increased. Additionally, we present the storage and loss moduli master curves for these materials obtained through application of the time-temperature superposition on measurements taken at a series of temperatures.


2018 ◽  
Vol 43 (3) ◽  
pp. 307-314 ◽  
Author(s):  
JEX Ong ◽  
AU Yap ◽  
JY Hong ◽  
AH Eweis ◽  
NA Yahya

SUMMARY This study investigated the viscoelastic properties of contemporary bulk-fill restoratives in distilled water and artificial saliva using dynamic mechanical analysis. The materials evaluated included a conventional composite (Filtek Z350), two bulk-fill composites (Filtek Bulk-fill and Tetric N Ceram), a bulk-fill giomer (Beautifil-Bulk Restorative), and two novel reinforced glass ionomer cements (Zirconomer [ZR] and Equia Forte [EQ]). The glass ionomer materials were also assessed with and without resin coating (Equia Forte Coat). Test specimens 12 × 2 × 2 mm of the various materials were fabricated using customized stainless-steel molds. After light polymerization/initial set, the specimens were removed from the molds, finished, measured, and conditioned in distilled water or artificial saliva at 37°C for seven days. The materials (n=10) were then subjected to dynamic mechanical testing in flexure mode at 37°C and a frequency of 0.1 to 10 Hz. Storage modulus, loss modulus, and loss tangent data were subjected to normality testing and statistical analysis using one-way analysis of variance/Dunnett's test and t-test at a significance level of p < 0.05. Mean storage modulus ranged from 3.16 ± 0.25 to 8.98 ± 0.44 GPa, while mean loss modulus ranged from 0.24 ± 0.03 to 0.65 ± 0.12 GPa for distilled water and artificial saliva. Values for loss tangent ranged from 45.7 ± 7.33 to 134.2 ± 12.36 (10−3). Significant differences in storage/loss modulus and loss tangent were observed between the various bulk-fill restoratives and two conditioning mediums. Storage modulus was significantly improved when EQ and ZR was not coated with resin.


Sign in / Sign up

Export Citation Format

Share Document