Greenhouse gas emissions from advanced oxidation processes in the degradation of bisphenol A: a comparative study of the H2O2/UV, TiO2 /UV, and ozonation processes

2020 ◽  
Vol 27 (11) ◽  
pp. 12227-12236 ◽  
Author(s):  
Young-Min Kang ◽  
Tae-Kyoung Kim ◽  
Moon-Kyung Kim ◽  
Kyung-Duk Zoh
2017 ◽  
pp. 147
Author(s):  
Naser Jamshidi ◽  
Farzad Nezhad Bahadori ◽  
Ladan Talebiazar ◽  
Ali Akbar Azimi

Today, advanced oxidation processes (AOPs) is considered as a key and effective method for environment preservation from pollutions. In this study , advanced photochemical oxidation processes using O3/H2O2 and O3/H2O2/UV systems were investigated batch photolytic reactor in lab-scale for the degradation of bisphenol A (BPA). In ozone generator source, air, as of the initial instrument feed, changes to ozone after electrical action and reaction. The UV irradiation source was a medium-pressure mercury lamp 300 W that was immerse in the wastewater solution with in 1.5 liter volume reactor. The reaction was influenced by the pH, the input concentration of H2O2, the input concentration of BPA, ozone dosage, chemical oxidation demand (COD) and UV irradiation time. Results showed that at initial bisphenol A concentration of 100 mg/l will completely degrade after 60 minutes by using O3/H2O2 in the pH range from 9.8 to 10 and by adding UV, it will happen in less than 36 minutes in the pH range of 3 to 10. The O3/H2O2/UV process reduced COD to 75 percents.


2015 ◽  
Vol 31 (3) ◽  
Author(s):  
Archina Buthiyappan ◽  
Abdul Raman Abdul Aziz ◽  
Wan Mohd Ashri Wan Daud

AbstractAdvanced oxidation processes (AOPs) are commonly used for treating recalcitrant wastewater with varying degree of efficiency, depending on several operating parameters. In this review, a comparative study among selected AOPs integrated with ultraviolet (UV) (UV/Fenton, UV/H


Sign in / Sign up

Export Citation Format

Share Document