scholarly journals Assessing the fluvial system resilience of the river Bacchiglione to point sources of pollution in Northeast Italy: a novel Water Resilience Index (WRI) approach

Author(s):  
Domenica Mirauda ◽  
Donatella Caniani ◽  
Maria Teresa Colucci ◽  
Marco Ostoich

AbstractModelling and evaluating the resilience of environmental systems has recently raised significant interest among both practitioners and researchers. However, it has not yet been used to measure the absorption and recovery capacities of a river subject to varying levels of pollution due to natural and anthropic sources of contamination within the basin. Fast worldwide population growth and climate change are contributing to an increased degradation status in surface water bodies and to a decreased efficiency of their natural self-purification processes. Decision-makers are, therefore, more and more encouraged to implement alternative management strategies focussed on improving the system resilience to current and future perturbations. To this end, a novel Water Resilience Index (WRI), based on different quality parameters, was developed, and it is here proposed to estimate the ability of the river Bacchiglione, located in Northeast Italy, absorb continuous and unpredictable changes due to potential effects of point sources of pollution, that is, urban and industrial wastewater, and still maintain its vital functions. This new index is integrated in a mathematical model, which represents the river as an influence diagram where the nodes are the gauged stations and the arcs are the fluvial reaches among the stations, to identify the river reaches in need of resilience improvement. In addition, in order to simplify the analytical procedure and lower the costs and times of the monitoring activities, a principal component analysis is also used, as it is able to reduce the number of the water quality parameters to be collected from the sampling stations, distributed along the main river, and thus to calculate a minimum WRI. The good agreement between the results obtained by both the original and minimum WRI shows the effectiveness of the proposed methodology. This approach could be applied to all basins with the same issues, and not just in the Italian case study here analysed, as it might be a valid tool to plan interventions and mitigation actions, protecting the resource from pollution risks and achieving environmental quality and Sustainable Development Goals both in the water bodies and their surrounding territories. In addition, this strategy could be integrated in the existing models supporting local decision-makers and administrators, aiming at increasing the resilience of urban and rural areas to pollution phenomena and facilitating the development of effective policies to reduce the impacts of global change on water quality.

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 457
Author(s):  
Raju Sekar ◽  
Xin Jin ◽  
Shuang Liu ◽  
Jing Lu ◽  
Jianwei Shen ◽  
...  

Freshwaters in China are affected by point and non-point sources of pollution. The Wujiang District (Suzhou City, China) has a long history of canals, rivers, and lakes that are currently facing various water quality issues. In this study, the water quality of four rivers and a lake in Wujiang was assessed to quantify pollution and explore its causes. Seventy-five monthly samples were collected from these water bodies (five locations/samples per area) from August to October 2020 and were compared with nine control samples collected from a water protection area. Fifteen physicochemical, microbiological, and molecular–microbiological parameters were analyzed, including nutrients, total and fecal coliforms, and fecal markers. Significant monthly variation was observed for most parameters at all areas. Total phosphorus, phosphates, total nitrogen, ammonium–nitrogen, and fecal coliforms mostly exceeded the acceptable limits set by the Chinese Ministry of Environmental Protection. The LiPuDang Lake and the WuFangGang River were the most degraded areas. The studied parameters were correlated with urban, agricultural, industrial, and other major land use patterns. The results suggest that fecal contamination and nutrients, associated with certain land use practices, are the primary pollution factors in the Wujiang District. Detailed water quality monitoring and targeted management strategies are necessary to control pollution in Wujiang’s watersheds.


2010 ◽  
Vol 44 (16) ◽  
pp. 4805-4811 ◽  
Author(s):  
Shih-Wei Huang ◽  
Bing-Mu Hsu ◽  
Shu-Fen Wu ◽  
Cheng-Wei Fan ◽  
Feng-Cheng Shih ◽  
...  

2021 ◽  
Vol 13 (12) ◽  
pp. 6565
Author(s):  
Shama E. Haque

Phosphorus is an essential component of modern agriculture. Long-term land application of phosphorous-enriched fertilizers and animal manure leads to phosphorus accumulation in soil that may become susceptible to mobilization via erosion, surface runoff and subsurface leaching. Globally, highly water-soluble phosphorus fertilizers used in agriculture have contributed to eutrophication and hypoxia in surface waters. This paper provides an overview of the literature relevant to the advances in phosphorous management strategies and surface water quality problems in the U.S. Over the past several decades, significant advances have been made to control phosphorus discharge into surface water bodies of the U.S. However, the current use of phosphorus remains inefficient at various stages of its life cycle, and phosphorus continues to remain a widespread problem in many water bodies, including the Gulf of Mexico and Lake Erie. In particular, the Midwestern Corn Belt region of the U.S. is a hotspot of phosphorous fertilization that has resulted in a net positive soil phosphorous balance. The runoff of phosphorous has resulted in dense blooms of toxic, odor-causing phytoplankton that deteriorate water quality. In the past, considerable attention was focused on improving the water quality of freshwater bodies and estuaries by reducing inputs of phosphorus alone. However, new research suggests that strategies controlling the two main nutrients, phosphorus and nitrogen, are more effective in the management of eutrophication. There is no specific solution to solving phosphorus pollution of water resources; however, sustainable management of phosphorus requires an integrated approach combining at least a reduction in consumption levels, source management, more specific regime-based nutrient criteria, routine soil fertility evaluation and recommendations, transport management, as well as the development of extensive phosphorus recovery and recycling programs.


Author(s):  
Agnieszka Karczmarczyk

Abstract Hauled liquid waste as a pollutant of soils and waters in Poland. Improperly maintained holding tanks are often underestimated source of contamination of soil, groundwater and surface water. As a rule, wastewater stored in holding tanks, should be transported and treated in municipal wastewater treatment plants (WWTPs). There are 2,257,000 holding tanks in Poland, located mainly in rural areas. The article presents the results of analysis of wastewater management in 20 rural and urban-rural communes, which were chosen at random from the total number of 2,174 communes in Poland. The only criterion of commune selection was total or partial lack of sewerage system. Analysis of the collected data showed that on average only 27% of liquid waste from holding tanks ended at the WWTPs. The median is even lower and amounts to 17.5%. More than 4,000 Mg of P and 26,000 Mg of N is dispersed in the environment in uncontrolled manner. Those diffuse point sources of pollution may be one of the reasons in the difficulty of achieving of good ecological status of rivers and affect the quality of the Baltic Sea.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 267 ◽  
Author(s):  
Ersilia D’Ambrosio ◽  
Anna De Girolamo ◽  
Marinella Spanò ◽  
Vera Corbelli ◽  
Gennaro Capasso ◽  
...  

The objective of the present work is a spatial analysis aimed at supporting hydrological and water quality model applications in the Canale d’Aiedda basin (Puglia, Italy), a data-limited area. The basin is part of the sensitive environmental area of Taranto that requires remediation of the soil, subsoil, surface water, and groundwater. A monitoring plan was defined to record the streamflow and water quality parameters needed for calibrating and validating models, and a database archived in a GIS environment was built, which includes climatic data, soil hydraulic parameters, groundwater data, surface water quality parameters, point-source parameters, and information on agricultural practices. Based on a one-year monitoring of activities, the average annual loads of N-NO3 and P-PO4 delivered to the Mar Piccolo amounted to about 42 t year−1, and 2 t year−1, respectively. Knowledge uncertainty in monthly load estimation was found to be up to 25% for N-NO3 and 40% for P-PO4. The contributions of point sources in terms of N-NO3 and P-PO4 were estimated at 45% and 77%, respectively. This study defines a procedure for supporting modelling activities at the basin scale for data-limited regions.


1998 ◽  
Vol 38 (11) ◽  
pp. 77-85
Author(s):  
P. Marjanovic ◽  
M. Miloradov ◽  
F. van Zyl

The new National water policy will change the way water quality is managed in South Africa. The paper considers the water policy and the repercussions it will have for water quality management in South Africa and proposes a system that can be used to come up with optimum solutions for water quality management. The proposed solution integrates policy and institutional arrangements with the Cadastral system for point and non point sources of pollution and optimisation tools to ensure optimal management of water quality at any given time. The water quality management functions catered for by the proposed system are: resource allocation for pollution discharge, water quality protection, water quality monitoring, planning, development and operation.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 811 ◽  
Author(s):  
Ligia de Oliveira Serrano ◽  
Alisson Carraro Borges ◽  
Fernando Falco Pruski ◽  
Marília Carvalho de Melo

Although water availability depends both on qualitative and quantitative aspects, most studies focus only on one of these. Therefore, the goal here is to relate water quality and quantity with the construction of Load Duration Curves (LDC) and to estimate E. coli load patterns in different flow conditions, seasons, and positions of two sub-basins of the Doce watershed (Brazil): Piracicaba and Piranga. A novel methodology is proposed in which the Burr XII distribution is adjusted to the LDC to compare all observed loads to their respective Total Maximum Daily Load (TMDL), allowing the estimation of the relative difference (RD) between these. Higher values of RD were observed for low flows for the Piracicaba basin, more urbanized, where point sources of pollution are the primary concern, reaching up to 99% of needed load reduction. In the Piranga basin, more agricultural, there was a broader RD variation, from 9% to 97% load reduction needed, which is an evidence of point sources of pollution combined with non-point sources. The new methodology can be used to estimate the load reduction of any pollutant and can be used by environmental agencies to identify effective practices to minimize and control pollution in different locations of the basins.


2008 ◽  
Vol 57 (8) ◽  
pp. 1295-1300
Author(s):  
Nayana G. M. Silva ◽  
Marcos von Sperling

Downstream of Capim Branco I hydroelectric dam (Minas Gerais state, Brazil), there is the need of keeping a minimum flow of 7 m3/s. This low flow reach (LFR) has a length of 9 km. In order to raise the water level in the low flow reach, the construction of intermediate dikes along the river bed was decided. The LFR has a tributary that receives the discharge of treated wastewater. As part of this study, water quality of the low-flow reach was modelled, in order to gain insight into its possible behaviour under different scenarios (without and with intermediate dikes). QUAL2E equations were implemented in FORTRAN code. The model takes into account point-source pollution and diffuse pollution. Uncertainty analysis was performed, presenting probabilistic results and allowing identification of the more important coefficients in the LFR water-quality model. The simulated results indicate, in general, very good conditions for most of the water quality parameters The variables of more influence found in the sensitivity analysis were the conversion coefficients (without and with dikes), the initial conditions in the reach (without dikes), the non-point incremental contributions (without dikes) and the hydraulic characteristics of the reach (with dikes).


2020 ◽  
Author(s):  
Dainis Jakovels ◽  
Agris Brauns ◽  
Jevgenijs Filipovs ◽  
Tuuli Soomets

<p>Lakes and water reservoirs are important ecosystems providing such services as drinking water, recreation, support for biodiversity as well as regulation of carbon cycling and climate. There are about 117 million lakes worldwide and a high need for regular monitoring of their water quality. European Union Water Framework Directive (WFD) stipulates that member states shall establish a programme for monitoring the ecological status of all water bodies larger than 50 ha, in order to ensure future quality and quantity of inland waters. But only a fraction of lakes is included in in-situ monitoring networks due to limited resources. In Latvia, there are 2256 lakes larger than 1 ha covering 1.5% of Latvian territory, and approximately 300 lakes are larger than 50 ha, but only 180 are included in Inland water monitoring program, in addition, most of them are monitored once in three to six years. Besides, local municipalities are responsible for the management of lakes, and they are also interested in the assessment of ecological status and regular monitoring of these valuable assets. </p><p>Satellite data is a feasible way to monitor lakes over a large region with reasonable frequency and support the WFD status assessment process. There are several satellite-based sensors (eg. MERIS, MODIS, OLCI) available specially designed for monitoring of water quality parameters, however, they are limited only to use for large water bodies due to a coarse spatial resolution (250...1000 m/pix). Sentinel-2 MSI is a space-borne instrument providing 10...20 m/pix multispectral data on a regular basis (every 5 days at the equator and 2..3 days in Latvia), thus making it attractive for monitoring of inland water bodies, especially the small ones (<1 km<sup>2</sup>). </p><p>Development of Sentinel-2 satellite data-based service (SentiLake) for monitoring of Latvian lakes is being implemented within the ESA PECS for Latvia program. The pilot territory covers two regions in Latvia and includes more than 100 lakes larger than 50 ha. Automated workflow for selecting and processing of available Sentinel-2 data scenes for extracting of water quality parameters (chlorophyll-a and TSM concentrations) for each target water body has been developed. Latvia is a northern country with a frequently cloudy sky, therefore, optical remote sensing is challenging in or region. However, our results show that 1...4 low cloud cover Sentinel-2 data acquisitions per month could be expected due to high revisit frequency of Sentinel-2 satellites. Combination of C2X and C2RCC processors was chosen for the assessment of chl-a concentration showing the satisfactory performance - R<sup>2</sup> = 0,82 and RMSE = 21,2 µg/l. Chl-a assessment result is further converted and presented as a lake quality class. It is expected that SentiLake will provide supplementary data to limited in situ data for filling gaps and retrospective studies, as well as a visual tool for communication with the target audience.</p>


Sign in / Sign up

Export Citation Format

Share Document