Effectiveness of potassium ferrate (VI) as a green agent in the treatment and disinfection of carwash wastewater

Author(s):  
Maciej Thomas ◽  
Przemysław Drzewicz ◽  
Angelika Więckol-Ryk ◽  
Balamurugan Panneerselvam
Keyword(s):  
1995 ◽  
Vol 31 (5-6) ◽  
pp. 165-168 ◽  
Author(s):  
Futaba Kazama

The kinetics of inactivation by potassium ferrate were studied using a bacteriophage, F-specific RNA-coliphage Qβ as a viral model. The inactivation appeared to be expressed by Hom's model in phosphate buffer at pH 6, 7, and 8. The rate of inactivation depended on pH; the lower pH, the faster inactivation observed. To consider the mechanism by which ferrate caused inactivation, the efficiency of inactivation was checked after ferrate decomposition in buffer. Effective inactivation following Hom's model was also observed after the complete decomposition of ferrate ion; however, the efficiency of that inactivation disappeared by the addition of sodium thiosulphate, suggesting that rather long-lived oxidative intermediate was generated by the decomposition of ferrate ion. The intermediate might take part in the inactivation.


2013 ◽  
Vol 295-298 ◽  
pp. 1191-1194
Author(s):  
Lei Zhang ◽  
Zhao Cheng Zhang ◽  
Jian Guo Cui

This Experiment study on the simultaneous degradation effect of Cu(II) and Cr(Ⅵ) in the micro-polluted water by potassium ferrate. And the influential elements on the removal effects and probed into the degradation mechanism was analyzed. The results indicated that the removal rates of Cu(II),Cr(Ⅵ) by synergetic effect of potassium ferrate oxidation and coagulation were 76.2%、62.2%,respectively,when the optimizing conditions were as follows: oxidation pH was 7,oxidation time was 20min,flocculation pH was 9,flocculation time was 30min and dosage of potassium ferrate was 40mg/L.


2014 ◽  
Vol 881-883 ◽  
pp. 215-218
Author(s):  
Kai Luo ◽  
Gang Cao ◽  
Ming Yu Li ◽  
Gang Ren

The influencing factors of the stability for the potassium ferrate (K2FeO4), including pH, alkalinity, O3, KI, KClO3, KCl, NaClO3and Na2SiO3, were studied in this work. The results showed that the K2FeO4stability in water is best at about pH=10. The higher the alkalinity is, the stronger of K2FeO4stability would be. The O3had no effect to improve the K2FeO4stability. The K2FeO4stability would be best in water with 15mmol/L NaClO3, 10mmol/L Na2SiO3and 9mol/L alkalinity. Under this condition, the K2FeO4content would be 83.28% after 24h.


1996 ◽  
Vol 33 (3) ◽  
pp. 119-130 ◽  
Author(s):  
Allen C. Chao ◽  
Sergio J. de Luca ◽  
Carlos N. Idle

Studies concerning the treatment, stabilization and final disposal of biosolids, one of the by-products of wastewater treatment, in environmental recovery, have been intensified by the sanitary and environmental effects of land disposal. The careful assessment of biosolid quality shows that, when appropriately managed, the environmental risks of their uses can be minimized by chemical stabilization, and biosolids could even be used as fertilizer and soil conditioner. A research study of biosolid stabilization was performed using lime as a standard process compared to potassium ferrate (VI). The chances of leaching and solubilization of metals were tested, simulating conditions for disposal in the environment. The sanitary effectiveness in terms of pathogens (bacteria, fungi and helminth eggs) were also evaluated. Experiments were performed on the lime and ferrate(VI) treatment of compounds such as ammonia, nitrate, soluble sulphides, and total sulphates, indicators of odouriferous offensive compounds which might occasionally prevent some uses of the solids, and the results are presented in this paper. Wastewater Treatment Plants emit offensive odours generated during the sewage treatment process, as well as during the treatment and the management of biosolids. This occurs in the drying beds and the spreading of biosolids on land, due to the high concentrations of sulphur compounds, nitrogen compounds, acids and organic compounds (aldehydes and ketones). The potassium ferrate(VI) utilized in the research is a powerful oxidizing agent throughout the pH scale, with the advantage of not generating by-products which will cause toxicity or mutagenicity (DE LUCA, 1981). The ion ferrate(VI) has greater oxidizing power than permanganate, e.g., it oxidizes reduced sulfur forms to sulphate, ammonia to nitrate, hypochlorite to chlorite and chlorite to chlorate(DE LUCA et al., 1992; CHAO et al., 1992). This paper shows that, as expected, the potassium ferrate (VI) treatment replaces several chemical products utilized for odour control of sludges, mainly aggressive odours caused by ammonia and sulphides, through the formation of precipitates with iron compounds. Ferrate (VI) has often been shown to destroy soluble sulphides, transforming them into sulphate. The generation of oxygen in the decomposition of ferrate(VI) increases its oxidizing power. Ferrate(VI) applied to sludges also has the double effect of transforming ammonia into nitrates, such that this product takes the place of sulphates, acting as an electron acceptor, thus preventing the development of further odours when biosolids are utilized.


Sign in / Sign up

Export Citation Format

Share Document