scholarly journals Effect of physical properties of synthesized protic ionic liquid on carbon dioxide absorption rate

Author(s):  
Amita Chaudhary ◽  
Ashok N Bhaskarwar
2021 ◽  
Author(s):  
Amita Chaudhary ◽  
Ashok N Bhaskarwar

Abstract Concentration of carbon dioxide gas has accelerated from the last two decades which cause drastic changes in the climatic conditions. In industries, carbon capture plants use volatile organic solvent which causes many environmental threats. So, a low-cost green absorbent has been formulated with nontoxicity and high selectivity properties for absorbing carbon dioxide gas. This paper contains the synthesis process along with the structure confirmation using 1H NMR, 13C NMR, FT-IR, and mass spectroscopy. Density, viscosity, and diffusivity are measured at different ranges with standard instruments. The kinetic studies were also conducted in a standard predefined-interface stirred-cell reactor. The kinetic parameters were calculated at different parameters like agitation speeds, absorption temperature, initial concentrations of ionic liquid, and partial pressure of carbon dioxide. The reaction regime of carbon dioxide absorption is found to be in fast reaction kinetics with pseudo first order. The reaction rate and the activation energy of CO2 absorption are experimentally determined in the range of 299 K to 333K with different initial concentrations of ionic liquid (0.1-1.1 kmol/m3). The second order rate constant and activation energy of carbon dioxide absorption in the synthesized ionic liquid is found to be (6385.93 to 12632.01 m3 mol-1 s-1) and 16.61 kJ mol−1 respectively. This solvent has shown great potential to absorb CO2 at large scale.


2021 ◽  
Vol 13 (7) ◽  
pp. 4011
Author(s):  
Alfredo Sánchez-Bautista ◽  
Ester M. Palmero ◽  
Alberto J. Moya ◽  
Diego Gómez-Díaz ◽  
M. Dolores La Rubia

There are a lot of research programs focusing on the development of new solvents for carbon dioxide capture. The most important priority should be reducing the energy consumption needed at the regeneration step, but minimizing solvent degradation and its corrosivity is also considered as a priority. In this research, the aqueous blends of 2-amino-2-methyl-1-propanol (AMP: 1 kmol·m−3) and 1-amino-2-propanol (MIPA: 0.1–0.5 kmol·m−3) are characterized in terms of density, viscosity, and surface tension. The carbon dioxide absorption rate and capacity, the regeneration capacity, and the corrosivity of these solvents are also evaluated.


2018 ◽  
Vol 460 ◽  
pp. 162-174 ◽  
Author(s):  
Murilo L. Alcantara ◽  
Marlon L. de Carvalho ◽  
Victor H. Álvarez ◽  
Pedro I.S. Ferreira ◽  
Márcio L.L. Paredes ◽  
...  

Author(s):  
Shu-Mei Xia ◽  
Yu Song ◽  
Xue-Dong Li ◽  
Hong-Ru Li ◽  
Liang-Nian He

To circumvent the thermodynamic limitation of the synthesis of oxazolidinones starting from 2-aminoethanols and CO2 and realize incorporation CO2 under atmospheric pressure, a protic ionic liquid-facilitated three-component reaction of propargyl alcohols, CO2 and 2-aminoethanols was developed to produce 2-oxazolidinones along with equal amount of α-hydroxyl ketones. The ionic liquid structure, reaction temperature and reaction time were in detail investigated. And 15 mol% [TBDH][TFE] (1,5,7-triazabicylo[4.4.0]dec-5-ene trifluoroethanol) was found to be able to synergistically activate the substrate and CO2, thus catalyzing this cascade reaction under atmospheric CO2 pressure. By employing this task-specific ionic liquid as sustainable catalyst, 2-aminoethanols with different substituents were successfully transformed to 2-oxazolidinones with moderate to excellent yield after 12 h at 80 oC. This three-component reaction running under atmospheric pressure proves to be a clever detour to avoid the thermodynamic issue in the synthesis of 2-oxazolidinones starting from 2-aminoethanols and CO2.


2019 ◽  
Vol 296 ◽  
pp. 111791 ◽  
Author(s):  
Bingbing Yang ◽  
Dawei Shang ◽  
Wenhui Tu ◽  
Shaojuan Zeng ◽  
Lu Bai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document