scholarly journals Challenges in using soil carbon modelling in LCA of agricultural products—the devil is in the detail

Author(s):  
Katri Joensuu ◽  
Karoliina Rimhanen ◽  
Hannele Heusala ◽  
Merja Saarinen ◽  
Kirsi Usva ◽  
...  

Abstract Purpose Currently, there is no consensus on how the impacts of land use on the soil organic carbon (SOC) stocks would be best quantified within life cycle assessments (LCA) of agricultural products. The impacts of different decisions were tested within a model-based assessment of soil carbon changes on the life cycle global warming impact for spring wheat produced in two example regions in Finland (Southwest Finland and Northern Savonia) on mineral fields. Methods Global warming impact for spring wheat was assessed, including CO2 emissions due to the SOC change. The SOC change assessment was made with the soil carbon model Yasso07. The effects of assumptions on land use history were tested, i.e. the initialisation of the model and time horizon of the analysis (20 or 100 years) on the SOC change estimates. Other greenhouse gas emissions contributing to the global warming impact of spring wheat production were assessed using general LCA methodology taking into account the greenhouse gas emissions caused by the production of input materials and fuels, as well as direct and indirect N2O emissions from the soil due to fertilising and the decomposition of crop residues and organic matter, nitrogen leaching and volatilisation and lime application. Results and discussion The selection of the model initialisation method and timeframe remarkably affected the SOC change estimates. The global warming impact of wheat production, without accounting for SOC changes, was 0.68 and 0.89 kg CO2-eq/kg yield in Southwest Finland and Northern Savonia, respectively. The impact of SOC stock changes on the total global warming impact varied from –4 to 5% in Southwest Finland and from 5 to 21% in Northern Savonia, depending on the assumptions used to initialise the model or the timeframe applied in the analysis. Adding a cover crop as a means to increase the SOC stock removed between –67 and –26% of the total global warming impact in both regions. Conclusions It is essential that all the decisions made in the analysis are transparently reported and communicated. The choice of assumptions regarding the reference state, model initialisation and time horizon of the assessment period should be made based on the scope and goal definition of the LCA study.

2021 ◽  
Vol 1 ◽  
Author(s):  
Qian Liu ◽  
Peipei Wang ◽  
Zhijing Xue ◽  
Zhengchao Zhou ◽  
Jun'e Liu ◽  
...  

Emerging consensus is that land-use change resulting through the “Grain for Green” project has had a significant impacted on soil organic carbon (SOC), thereby probably enhancing the carbon sequestration capacity of terrestrial ecosystems. However, it remains largely unknown whether a watershed acts as a source or sink of soil carbon during the later period of ecological restoration. This study comprehensively investigated the changes of SOC stock in 2005, 2010, and 2017 along different land-use types. It was aimed to evaluate the dynamics to SOC storage capacity over different vegetation restoration maturity in the Shanghuang Watershed, China. The results showed that restoration increased the accumulation of organic carbon pools in the early stage. Significant increases in SOC stock were observed in shrubland and grassland in comparison to that in other land uses, and these two land-use types represented the optimal combination for ecological restoration in the basin. The SOC stock did not increase indefinitely during the long-term vegetation restoration process, but rather first increased rapidly with vegetation planting and reached a peak, following which it declined slightly. Therefore, pure vegetation restoration cannot maintain a permanent soil carbon sink, some measures to maintain the stability of carbon and to prolong soil C persistence are essential to take.


Author(s):  
Bayu Sukmana ◽  
Isti Surjandari ◽  
Muryanto . ◽  
Arief A. R. Setiawan ◽  
Edi Iswanto Wiloso

Firstly global warming issue caused by greenhouse gas emissions (CO2) which comes from human activities. Along with increasing of daily need, that humans of activities food produce is also increase, include of tofu. Tofu is a traditional Indonesian specialty made from soybeans and used as a side dish. The purpose of this study was to determine the impact of global warming from tofu products on Mampang Prapatan's Small Tofu and Medium Enterprises. The method used in this study is the Life Cycle Assessment (LCA) method with the help of Simapro 8.4 software with a 1 kg tofu functional unit. The data collected in this study is the average data of tofu production for 3 months, namely January - March 2018. The LCA data in this study include the process of soybean cultivation, transportation processes for shipping soybeans, water, fuel wood, and electricity use. The limitations of this study are from cradle (soybean cultivation) to gate (tofu products).The results showed that UKM Mampang Prapatan has the potential impact of global warming with a value of 3.84 kg CO2-eq, while the value of global warming in the production process knows the scenario of wastewater treatment and the use of Liquefied Petroleum Gas (LPG) as fuel for boiling pulp 4.49 kg CO2-eq soybeans. Based on the results of this study, greenhouse gas (CO2) emissions are issued; the intervention that can be done is to optimize the use of raw materials for production to reduce the impact of CO2-eq kg global warming.


GCB Bioenergy ◽  
2011 ◽  
Vol 4 (4) ◽  
pp. 372-391 ◽  
Author(s):  
Axel Don ◽  
Bruce Osborne ◽  
Astley Hastings ◽  
Ute Skiba ◽  
Mette S. Carter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document