PCB removal, soil enzyme activities, and microbial community structures during the phytoremediation by alfalfa in field soils

2011 ◽  
Vol 11 (4) ◽  
pp. 649-656 ◽  
Author(s):  
Chen Tu ◽  
Ying Teng ◽  
Yongming Luo ◽  
Xianghui Sun ◽  
Shaopo Deng ◽  
...  
2017 ◽  
Vol 37 (5) ◽  
Author(s):  
张旭龙 ZHANG Xulong ◽  
马淼 MA Miao ◽  
吴振振 WU Zhenzhen ◽  
张志政 ZHANG Zhizheng ◽  
高睿 GAO Rui ◽  
...  

Forests ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 11 ◽  
Author(s):  
Chaoqun Wang ◽  
Lin Xue ◽  
Yuhong Dong ◽  
Lingyu Hou ◽  
Yihui Wei ◽  
...  

Soil enzymes and microbial communities are key factors in forest soil ecosystem functions and are affected by stand age. In this study, we studied soil enzyme activities, composition and diversity of bacterial and fungal communities and relevant physicochemical properties at 0–10 cm depth (D1), 10–20 cm depth (D2) and 20–30 cm depth (D3) soil layers in 3-(3a), 6-(6a), 12-(12a), 18-(18a), 25-(25a), 32-(32a) and 49-year-old (49a) Chinese fir plantations to further reveal the effects of stand age on soil biotic properties. Spectrophotometry and high-throughput sequencing was used to assess the soil enzyme activity and microbial community composition and diversity of Chinese fir plantation of different stand ages, respectively. We found that soil catalase activity increased as the stand age of Chinese fir plantations increased, whereas the activities of urease, sucrase and β-glucosidase in 12a, 18a and 25a were lower than those in 6a, 32a and 49a. Shannon and Chao1 indices of bacterial and fungal communities first decreased gradually from 6a to 18a or 25a and then increased gradually from 25a to 49a. Interestingly, the sucrase and β-glucosidase activities and the Shannon and Chao1 indices in 3a were all lower than 6a. We found that the relative abundance of dominant microbial phyla differed among stand ages and soil depths. The proportion of Acidobacteria first increased and then decreased from low forest age to high forest age, and its relative abundance in 12a, 18a and 25a were higher than 3a, 32a and 49a, but the proportion of Proteobacteria was opposite. The proportion of Ascomycota first decreased and then increased from 6a to 49a, and its relative abundance in 12a, 18a and 25a was lower than 3a, 6a, 32a and 49a. Our results indicate that soil enzyme activities and the richness and diversity of the microbial community are limited in the middle stand age (from 12a to 25a), which is important for developing forest management strategies to mitigate the impacts of degradation of soil biological activities.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6497 ◽  
Author(s):  
Zengru Wang ◽  
Yubing Liu ◽  
Lina Zhao ◽  
Wenli Zhang ◽  
Lichao Liu

The importance of soil microbial flora in agro-ecosystems is well known, but there is limited understanding of the effects of long-term fertilization on soil microbial community succession in different farming management practices. Here, we report the responses of soil microbial community structure, abundance and activity to chemical (CF) and organic fertilization (OF) treatments in a sandy agricultural system of wheat-maize rotation over a 17-year period. Illumina MiSeq sequencing showed that the microbial community diversity and richness showed no significant changes in bacteria but decreased in fungi under both CF and OF treatments. The dominant species showing significant differences between fertilization regimes were Actinobacteria, Acidobacteria and Ascomycota at the phylum level, as well as some unclassified genera of other phyla at the genus level. As expected, soil organic matter content, nutrient element concentrations and bacterial abundance were enhanced by both types of fertilization, especially in OF, but fungal abundance was inhibited by OF. Redundancy analysis revealed that soil enzyme activities were closely related to both bacterial and fungal communities, and the soil nutrient, texture and pH value together determined the community structures. Bacterial abundance might be the primary driver of crop yield, and soil enzyme activities may reflect crop yield. Our results suggest a relatively permanent response of soil microbial communities to the long-term fertilization regimes in a reclaimed sandy agro-ecosystem from a mobile dune, and indicate that the appropriate dosage of chemical fertilizers is beneficial to sandy soil sustainability.


Sign in / Sign up

Export Citation Format

Share Document