Impacts of long-term lack of potassium fertilization on different forms of soil potassium and crop yields on the North China Plains

2017 ◽  
Vol 17 (6) ◽  
pp. 1607-1617 ◽  
Author(s):  
Jiangye Li ◽  
Lingan Niu ◽  
Qichun Zhang ◽  
Hongjie Di ◽  
Jinmin Hao
2014 ◽  
Vol 169 ◽  
pp. 116-122 ◽  
Author(s):  
Shicheng Zhao ◽  
Ping He ◽  
Shaojun Qiu ◽  
Liangliang Jia ◽  
Mengchao Liu ◽  
...  

Bragantia ◽  
2010 ◽  
Vol 69 (suppl) ◽  
pp. 9-18 ◽  
Author(s):  
Osvaldo Guedes Filho ◽  
Sidney Rosa Vieira ◽  
Marcio Koiti Chiba ◽  
Célia Regina Grego

It is known, for a long time, that crop yields are not uniform at the field. In some places, it is possible to distinguish sites with both low and high yields even within the same area. This work aimed to evaluate the spatial and temporal variability of some crop yields and to identify potential zones for site specific management in an area under no-tillage system for 23 years. Data were analyzed from a 3.42 ha long term experimental area at the Centro Experimental Central of the Instituto Agronômico, located in Campinas, Sao Paulo State, Brazil. The crop yield data evaluated included the following crops: soybean, maize, lablab and triticale, and all of them were cultivated since 1985 and sampled at a regular grid of 302 points. Data were normalized and analyzed using descriptive statistics and geostatistical tools in order to demonstrate and describe the structure of the spatial variability. All crop yields showed high variability. All of them also showed spatial dependence and were fitted to the spherical model, except for the yield of the maize in 1999 productivity which was fitted to the exponential model. The north part of the area presented repeated high values of productivity in some years. There was a positive cross correlation amongst the productivity values, especially for the maize crops.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 145
Author(s):  
Rui Yang ◽  
Panhong Dai ◽  
Bin Wang ◽  
Tao Jin ◽  
Ke Liu ◽  
...  

Global warming and altered precipitation patterns pose a serious threat to crop production in the North China Plain (NCP). Quantifying the frequency of adverse climate events (e.g., frost, heat and drought) under future climates and assessing how those climatic extreme events would affect yield are important to effectively inform and make science-based adaptation options for agriculture in a changing climate. In this study, we evaluated the effects of heat and frost stress during sensitive phenological stages at four representative sites in the NCP using the APSIM-wheat model. climate data included historical and future climates, the latter being informed by projections from 22 Global Climate Models (GCMs) in the Coupled Model Inter-comparison Project phase 6 (CMIP6) for the period 2031–2060 (2050s). Our results show that current projections of future wheat yield potential in the North China Plain may be overestimated; after more accurately accounting for the effects of frost and heat stress in the model, yield projections for 2031-60 decreased from 31% to 9%. Clustering of common drought-stress seasonal patterns into key groups revealed that moderate drought stress environments are likely to be alleviated in the future, although the frequency of severe drought-stress environments would remain similar (25%) to that occurring under the current climate. We highlight the importance of mechanistically accounting for temperature stress on crop physiology, enabling more robust projections of crop yields under future the burgeoning climate crisis.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 312 ◽  
Author(s):  
Amara Cisse ◽  
Adnan Arshad ◽  
Xiaofen Wang ◽  
Fanta Yattara ◽  
Yuegao Hu

The effects of long-term incorporation of organic manure and biofertilizers have been investigated on winter wheat in the North China Plain (NCP). The five-year field experiment (2013–2018) has illustrated the responses of grain yield and yield components. Seven fertilization approaches, included pig farm-yard-manure and biofertilizers amendments combined with five NPK% drop levels of chemical fertilizer ratio + organic fertilizer + biofertilizer (0, C+O+B) 25%, CL4; 50%, CL3; 75%, CL1; and 100%, CL0), without fertilizer as control (CK), in NCP during the years 2013–2018. Results showed that the grain yields of CL1 and CL2 were equivalent to CL0 in all growing seasons except 2014/2015. The grain yields of CL4 were 29.9% to 46.6% lower than that of CL0 during 2014/2015, 2016/2017, and 2017/2018. The valuable spike-number, grain number per-spike, and 1000-grain weight showed significant variations among different growing periods. Regression analysis of grain yield and yield components indicated that number grains per-spike showed significant increase in seed yield formation. The 1000-grain weight was the major parameter that influenced yield of moderate and low yielding periods, respectively. The results revealed that application of 30 m3 ha−1 pig farm-yard-manure and 20 kg ha−1 biofertilizers has reduced at least 50% of the NPK fertilization without dropping grain yields in the North China Plain.


2013 ◽  
Vol 14 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Yuan Liu ◽  
Xiaoguang Yang ◽  
Enli Wang ◽  
Changying Xue

CATENA ◽  
2020 ◽  
Vol 188 ◽  
pp. 104428 ◽  
Author(s):  
Zheng-Rong Kan ◽  
Shou-Tian Ma ◽  
Qiu-Yue Liu ◽  
Bing-Yang Liu ◽  
Ahmad Latif Virk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document