Sediment detachment by raindrop impact on grassland and arable fields: an investigation of controls

Author(s):  
S. Pulley ◽  
C. Morten ◽  
S. Morgan ◽  
L. M. Cardenas ◽  
A. L. Collins
Euphytica ◽  
1989 ◽  
Vol 41 (3) ◽  
pp. 199-205 ◽  
Author(s):  
G. W. A. M. van der Heijden ◽  
J. G. P. W. Clevers ◽  
D. L. C. Brinkhorst-van der Swan

2006 ◽  
Vol 132 (1) ◽  
pp. 1-11 ◽  
Author(s):  
C. Nigel R. Critchley ◽  
John A. Fowbert ◽  
Ann J. Sherwood ◽  
Richard F. Pywell

2003 ◽  
Vol 141 (2) ◽  
pp. 231-240 ◽  
Author(s):  
P. J. W. LUTMAN ◽  
S. E. FREEMAN ◽  
C. PEKRUN

The present paper reports on three sets of experiments exploring the persistence of seeds of oilseed rape (Brassica napus). The first, where known numbers of seeds were buried in September 1991 in two field experiments, demonstrated substantial initial losses of seeds, such that only 0·2 and 3·8% of seeds were still present after 4 months. In these experiments, which were not disturbed by mechanical cultivation, there was little evidence of further decline over the following 13 months. In the second of the two experiments, seeds were then left undisturbed for a further 136 months. A mean of 1·8% of seeds were still present after this period, providing further confirmation of the lack of decline in seed numbers in these undisturbed conditions. In the second pair of experiments, known numbers of seeds of three rape cultivars were broadcast onto plots and then either ploughed into the soil immediately after the start of the experiments, or were exposed to weekly shallow tine cultivation followed by ploughing after 4 weeks. The former created a larger seedbank than the latter. The experiments were then ploughed, annually (Expt 1) or at less frequent intervals (Expt 2); appreciable numbers of seeds survived for 65 months in both. Calculations based on exponential decline curves indicated that 95% seed loss would take 15–39 months, depending on the site, cultivar and initial post-harvest stubble treatment. The third part of the paper is based on more detailed studies of persistence of seeds of six cultivars in Petri dishes and buried in 25 cm pots. This work confirmed that cultivars differed in their persistence, as Apex was confirmed as highly persistent, whereas Rebel was short-lived. There were inconsistencies in the response of cultivar Synergy between the Petri-dish and pot experiment, which need further study. This experiment also reinforced the conclusion of the initial field experiments that little seed loss occurs in the absence of cultivations. Appreciable numbers of rape seeds will persist up to 4 years, in normal cropping conditions and in the absence of cultivation one experiment has confirmed persistence for over 11 years.


2021 ◽  
Vol 13 (10) ◽  
pp. 1897
Author(s):  
Jerzy Cierniewski ◽  
Jean-Louis Roujean ◽  
Jarosław Jasiewicz ◽  
Sławomir Królewicz

Tillage of arable fields, using for instance a smoothing harrow, may increase the magnitude of albedo of such soil surfaces depending on the location, the sun’s illumination and atmospheric components. As these soil surfaces absorb less shortwave radiation compared to plowed soils, the result is an atmospheric cooling and a positive effect on the Earth’s climate. This paper is the follow-on of a previous study aimed at quantifying the seasonal dynamics of net shortwave radiation reflected by bare air-dried arable land areas located in contrasting environments, i.e. Poland and Israel. Soil tillage includes a plow, a disk harrow, and a smoothing harrow. Previous work concentrated on the estimate of net shortwave radiation under clear-sky theoretical scenarios, whereas the present study deals with a realistic atmosphere throughout the year 2014. This latter is characterized by the observations of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument on board the Meteosat Second Generation (MSG). The variations of the net shortwave radiation for the selected bare arable land areas were assessed in combining observations from Landsat 8 images and digital maps of land use and soil, plus model equations that calculate the diurnal variations of the broadband blue-sky albedo with roughness inclusive. The daily amount of net shortwave radiation for air-dried bare arable land in Poland and Israel for the time their spatial coverage is the largest was found to be about 40–50% and 10% lower, respectively, in cloudy-sky conditions compared to clear-sky conditions.


2017 ◽  
Vol 95 (4) ◽  
Author(s):  
Rianne de Jong ◽  
Song-Chuan Zhao ◽  
Devaraj van der Meer

Soil Research ◽  
1983 ◽  
Vol 21 (2) ◽  
pp. 109 ◽  
Author(s):  
MJ Singer ◽  
PH Walker

The 20-100 mm portion of a yellow podzolic soil (Albaqualf) from the Ginninderra Experiment Station (A.C.T.) was used in a rainfall simulator and flume facility to elucidate the interactions between raindrop impact, overland water flow and straw cover as they affect soil erosion. A replicated factorial design compared soil loss in splash and runoff from 50 and 100 mm h-1 rainfall, the equivalent of 100 mm h-1 overland flow, and 50 and 100 mm h-1 rainfall plus the equivalent of 100 mm h-' overland flow, all at 0, 40 and 80% straw cover on a 9% slope. As rainfall intensity increased, soil loss in splash and runoff increased. Within cover levels, the effect of added overland flow was to decrease splash but to increase total soil loss. This is due to an interaction between raindrops and runoff which produces a powerful detaching and transporting mechanism within the flow known as rain-flow transportation. Airsplash is reduced, in part, because of the changes in splash characteristics which accompany changes in depths of runoff water. Rain-flow transportation accounted for at least 64% of soil transport in the experiment and airsplash accounted for no more than 25% of soil transport The effects of rainfall, overland flow and cover treatments, rather than being additive, were found to correlate with a natural log transform of the soil loss data.


1992 ◽  
Vol 92 (2) ◽  
pp. 1017-1021 ◽  
Author(s):  
Jeffrey A. Nystuen ◽  
Leo H. Ostwald ◽  
Herman Medwin
Keyword(s):  

2012 ◽  
Vol 64 (3) ◽  
pp. 971-980 ◽  
Author(s):  
Ewa Zurawska-Seta ◽  
T. Barczak

European moles are widespread in both cultivated and uncultivated areas in Poland. Their occurrence and distribution in relation to the physical and chemical characteristics of soil has been already studied in previous research. However, there is still an open question about the impact of the structure of anthropogenic habitats produced by agriculture on moles. The main aim of this study is to assess the influence of different kinds of field margins on the presence and spatial distribution of the European mole Talpa europaea L. in farmlands. Methods included the monitoring of six investigative sites in northern Poland. Observations were made during three six-month periods in 2005-2008 of the presence or absence of moles as recognized by recent molehills and surface tunnels. There was a very clear tendency by moles to occupy areas within arable fields close to field boundaries with wide verges containing ruderal and woodland communities with a spacious zone of ecotones. Narrow boundary strips were avoided by moles. In conclusion, the conducted research confirms that field margins have an impact on the presence and spatial distribution of moles within ploughed lands. Our results may be helpful in improving the relation between agricultural development and biodiversity conservation, and the rational use of nature by humankind.


Sign in / Sign up

Export Citation Format

Share Document