Thermal evolution and applications of aromatic hydrocarbons in highly mature coal-bearing source rocks of the Upper Triassic Xujiahe Formation in the northern Sichuan Basin

2015 ◽  
Vol 58 (11) ◽  
pp. 1960-1969 ◽  
Author(s):  
Ying Li ◽  
YangMing Zhu ◽  
Fang Hao ◽  
HuaYao Zou ◽  
TongLou Guo
2014 ◽  
Vol 977 ◽  
pp. 308-311
Author(s):  
Hai Tao Xue ◽  
Guo Dong Mu ◽  
Shan Si Tian ◽  
Shuang Fang Lu

The organic matter of marine strata has high degree of thermal evolution in Sichuan Basin. The gas generation ability of kerogen is very limited, which mainly relies on the soluble organic matter as gas parent material to provide gas source for gas reservoir. In this paper, chemical kinetics method and experiments are applied to study on the history of gas generation and gas generation rate of organic matter in Sichuan marine strata. Result shows that dissipated soluble organic matter in source rocks, dissipated soluble organic matter out of source rocks and organic matter in paleo-reservoir successively generate gas in proper order. Dissipated soluble organic matter out of source rocks and the oil in paleo-reservoir belong to late gas generation.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xianglu Tang ◽  
Wei Wu ◽  
Guanghai Zhong ◽  
Zhenxue Jiang ◽  
Shijie He ◽  
...  

Adsorbed gas is an important component of shale gas. The methane adsorption capacity of shale determines the composition of shale gas. In this study, the methane adsorption capacity of marine, transitional, and lacustrine shales in the Sichuan Basin was analyzed through its isothermal adsorption, mineral composition, water content, etc. The results show that the methane adsorption capacity of marine (Qiongzhusi Formation and Longmaxi Formation), transitional (Longtan Formation), and lacustrine (Xujiahe Formation and Ziliujing Formation) shales is significantly different. The Longtan Formation has the strongest methane adsorption capacity. This is primarily related to its high organic matter and organic matter type III content. The methane adsorption capacity of the lacustrine shale was the weakest. This is primarily related to the low thermal evolution degree and the high content of water-bearing clay minerals. Smectite has the highest methane adsorption capacity of the clay minerals, due to its crystal structure. The water content has a significant effect on methane adsorption largely because water molecules occupy the adsorption site. Additionally, the temperature and pressure in a specific range significantly affect methane adsorption capacity.


Sign in / Sign up

Export Citation Format

Share Document