Ionospheric absorption and planetary wave activity in East Asia sector

2012 ◽  
Vol 55 (5) ◽  
pp. 1264-1272 ◽  
Author(s):  
YongQiang Hao ◽  
DongHe Zhang
2011 ◽  
Vol 11 (3) ◽  
pp. 9743-9767 ◽  
Author(s):  
M. M. Hurwitz ◽  
I.-S. Song ◽  
L. D. Oman ◽  
P. A. Newman ◽  
A. M. Molod ◽  
...  

Abstract. A new formulation of the Goddard Earth Observing System Chemistry-Climate Model, Version 2 (GEOS V2 CCM), with an improved general circulation model and an internally generated quasi-biennial oscillation (QBO), is used to investigate the response of the Antarctic stratosphere to (1) warm pool El Niño (WPEN) events and (2) the sensitivity of this response to the phase of the QBO. Two 50-yr time-slice simulations are forced by repeating annual cycles of sea surface temperatures and sea ice concentrations composited from observed WPEN and neutral ENSO (ENSON) events. In these simulations, greenhouse gas and ozone-depleting substance concentrations represent the present-day climate. The modelled responses to WPEN, and to the phase of the QBO during WPEN, are compared with NASA's Modern Era Retrospective-Analysis for Research and Applications (MERRA) reanalysis. WPEN events enhance poleward planetary wave activity in the central South Pacific during austral spring, leading to relative warming of the Antarctic lower stratosphere in November/December. During the easterly phase of the QBO (QBO-E), the GEOS V2 CCM reproduces the observed 3–5 K warming of the polar region at 50 hPa, in the WPEN simulation relative to ENSON. In the recent past, the response to WPEN events was sensitive to the phase of the QBO: the enhancement in planetary wave driving and the lower stratospheric warming signal were mainly associated with WPEN events coincident with QBO-E. In the GEOS V2 CCM, however, the Antarctic response to WPEN events is insensitive to the phase of the QBO: the modelled response is always easterly QBO-like. OLR, streamfunction and Rossby wave energy diagnostics are used to show that the modelled QBO does not extend far enough into the lower stratosphere and upper troposphere to modulate convection and thus planetary wave activity in the south central Pacific.


2021 ◽  
Author(s):  
Alain Hauchecorne ◽  
Chantal Claud ◽  
Philippe Keckhut

<p>Sudden Stratospheric Warming (SSW) is the most spectacular dynamic event occurring in the middle atmosphere. It can lead to a warming of the winter polar stratosphere by a few tens of K in one to two weeks and a reversal of the stratospheric circulation from wintertime prevailing westerly winds to easterly winds similar to summer conditions. This strong modification of the stratospheric circulation has consequences for several applications, including the modification of the stratospheric infrasound guide. Depending on the date of the SSW, the westerly circulation can be re-established if the SSW occurs in mid-winter or the summer easterly circulation can be definitively established if the SSW occurs in late winter. In the latter case it is called Final Warming (FW). Each year, it is possible to define the date of the FW as the date of the final inversion of the zonal wind at 60°N - 10 hPa . If the FW is associated with a strong peak of planetary wave activity and a rapid increase in polar temperature, it is classified as dynamic FW. If the transition to the easterly wind is smooth without planetary wave activity, the FW is classified as radiative.</p><p>The analysis of the ERA5 database, which has recently been extended to 1950 (71 years of data), allowed a statistical analysis of the evolution of the stratosphere in winter. The main conclusions of this study will be presented :</p><p>- the state of the polar vortex in a given month is anticorrelated with its state 2 to 3 months earlier. The beginning of winter is anticorrelated with mid-winter and mid-winter is anticorrelated with the end of winter;</p><p>- dynamic FWs occur early in the season (March - early April) and are associated with a strong positive polar temperature anomaly, while radiative FWs occur later (late April - early May) without a polar temperature anomaly;</p><p>- the summer stratosphere (polar temperature and zonal wind) keeps the memory of its state in April-May at the time of FW at least until July .</p><p>These results could help to improve medium-range weather forecasts in the Northern Hemisphere due to the strong dynamic coupling between the troposphere and stratosphere during SSW events.</p>


2017 ◽  
Vol 31 (1) ◽  
pp. 115-130 ◽  
Author(s):  
Oliver Watt-Meyer ◽  
Paul J. Kushner

Abstract The distribution of temperatures in the wintertime polar stratosphere is significantly positively skewed, which has important implications for the characteristics of ozone chemistry and stratosphere–troposphere coupling. The typical argument for why the temperature distribution is skewed is that radiative balance sets a firm lower limit, while planetary wave driving can force much larger positive anomalies in temperature. However, the distribution of the upward Eliassen–Palm (EP) flux is also positively skewed, and this suggests that dynamics may play an important role in setting the skewness of the temperature distribution. This study explains the skewness of the upward EP flux distribution by appealing to the ideas of linear interference. In this framework, fluxes are decomposed into a linear term (LIN) that measures the coherence of the wave anomaly and the climatological wave and an additional nonlinear term (NONLIN) that depends only on the wave anomaly. It is shown that when filtered by wavenumber, there is a clear nonlinear dependence between LIN and NONLIN: the terms cancel when LIN is negative, but they reinforce each other when LIN is positive. This leads to the positive skewness of the upward wave activity flux. A toy model of wave interference is constructed, and it is shown that the westward vertical tilt of the climatological wave is the key ingredient to a positively skewed upward EP flux distribution. The causes of the skews of the LIN and NONLIN distributions themselves are shown to be related to relationships between wave phase and amplitude, and wave phase and vertical tilt, respectively.


Sign in / Sign up

Export Citation Format

Share Document