Final Sudden Stratospheric Warmings and the memory of the stratosphere

Author(s):  
Alain Hauchecorne ◽  
Chantal Claud ◽  
Philippe Keckhut

<p>Sudden Stratospheric Warming (SSW) is the most spectacular dynamic event occurring in the middle atmosphere. It can lead to a warming of the winter polar stratosphere by a few tens of K in one to two weeks and a reversal of the stratospheric circulation from wintertime prevailing westerly winds to easterly winds similar to summer conditions. This strong modification of the stratospheric circulation has consequences for several applications, including the modification of the stratospheric infrasound guide. Depending on the date of the SSW, the westerly circulation can be re-established if the SSW occurs in mid-winter or the summer easterly circulation can be definitively established if the SSW occurs in late winter. In the latter case it is called Final Warming (FW). Each year, it is possible to define the date of the FW as the date of the final inversion of the zonal wind at 60°N - 10 hPa . If the FW is associated with a strong peak of planetary wave activity and a rapid increase in polar temperature, it is classified as dynamic FW. If the transition to the easterly wind is smooth without planetary wave activity, the FW is classified as radiative.</p><p>The analysis of the ERA5 database, which has recently been extended to 1950 (71 years of data), allowed a statistical analysis of the evolution of the stratosphere in winter. The main conclusions of this study will be presented :</p><p>- the state of the polar vortex in a given month is anticorrelated with its state 2 to 3 months earlier. The beginning of winter is anticorrelated with mid-winter and mid-winter is anticorrelated with the end of winter;</p><p>- dynamic FWs occur early in the season (March - early April) and are associated with a strong positive polar temperature anomaly, while radiative FWs occur later (late April - early May) without a polar temperature anomaly;</p><p>- the summer stratosphere (polar temperature and zonal wind) keeps the memory of its state in April-May at the time of FW at least until July .</p><p>These results could help to improve medium-range weather forecasts in the Northern Hemisphere due to the strong dynamic coupling between the troposphere and stratosphere during SSW events.</p>

2022 ◽  
Vol 3 (1) ◽  
Author(s):  
Alain Hauchecorne ◽  
Chantal Claud ◽  
Philippe Keckhut ◽  
Alexis Mariaccia

AbstractIn early spring the stratospheric zonal circulation reverses from westerly to easterly. The transition, called Stratospheric Final Warming (SFW), may be smooth and late, mainly controlled by the solar radiative heating of the polar region, or early and abrupt with rapid increase of polar temperature and deceleration of the zonal wind, forced by the planetary wave activity. Here we present a study, based on 71 years meteorological reanalysis data. Two composites of radiative and dynamical SFWs have been built. There is a very significant difference in the evolution during the year of polar temperature and 60°N zonal wind between the two composites. The state of the polar vortex on given month is anticorrelated with its state 2 to 3 months earlier. Early winter is anticorrelated with mid-winter and mid-winter with late winter/early spring. The summer stratosphere keeps a memory of its state in April–May after the SFW until late June.


2011 ◽  
Vol 11 (4) ◽  
pp. 11649-11690 ◽  
Author(s):  
E. Monier ◽  
B. C. Weare

Abstract. The momentum budget of the Transformed Eulerian-Mean (TEM) equation is calculated using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40). This study outlines the considerable contribution of unresolved waves, dominated by gravity waves, to the forcing of the zonal-mean flow. A trend analysis, from 1980 to 2001, shows that the onset and break down of the Northern Hemisphere (NH) stratospheric polar night jet has a tendency to occur later. This temporal shift is associated with long-term changes in the planetary wave activity that are mainly due to synoptic waves. In the Southern Hemisphere (SH), the polar vortex shows a tendency to persist further into the SH summertime. This is associated with a statistically significant decrease in the intensity of the stationary EP flux divergence over the 1980–2001 period. Ozone depletion is well known for strengthening westerly winds through the thermal wind balance, which in turn causes a reduction in wave activity in high latitudes. This study suggests that the decrease in planetary wave activity provides an important feedback to the zonal wind as it delays the breakdown of the polar vortex. Finally, we identify long-term changes in the Brewer-Dobson circulation that, this study suggests, are largely caused by trends in the planetary wave activity during winter and by trends in the gravity wave forcing otherwise.


2019 ◽  
Vol 19 (15) ◽  
pp. 10303-10317 ◽  
Author(s):  
Yuke Wang ◽  
Valerii Shulga ◽  
Gennadi Milinevsky ◽  
Aleksey Patoka ◽  
Oleksandr Evtushevsky ◽  
...  

Abstract. The impact of a major sudden stratospheric warming (SSW) in the Arctic in February 2018 on the midlatitude mesosphere is investigated by performing the microwave radiometer measurements of carbon monoxide (CO) and zonal wind above Kharkiv, Ukraine (50.0∘ N, 36.3∘ E). The mesospheric peculiarities of this SSW event were observed using a recently designed and installed microwave radiometer in eastern Europe for the first time. Data from the ERA-Interim and MERRA-2 reanalyses, as well as the Aura microwave limb sounder measurements, are also used. Microwave observations of the daily CO profiles in January–March 2018 allowed for the retrieval of mesospheric zonal wind at 70–85 km (below the winter mesopause) over the Kharkiv site. Reversal of the mesospheric westerly from about 10 m s−1 to an easterly wind of about −10 m s−1 around 10 February was observed. The local microwave observations at our Northern Hemisphere (NH) midlatitude site combined with reanalysis data show wide-ranging daily variability in CO, zonal wind, and temperature in the mesosphere and stratosphere during the SSW of 2018. The observed local CO variability can be explained mainly by horizontal air mass redistribution due to planetary wave activity. Replacement of the CO-rich polar vortex air by CO-poor air of the surrounding area led to a significant mesospheric CO decrease over the station during the SSW and fragmentation of the vortex over the station at the SSW start caused enhanced stratospheric CO at about 30 km. The results of microwave measurements of CO and zonal wind in the midlatitude mesosphere at 70–85 km altitudes, which still are not adequately covered by ground-based observations, are useful for improving our understanding of the SSW impacts in this region.


2013 ◽  
Vol 70 (12) ◽  
pp. 3977-3994 ◽  
Author(s):  
John R. Albers ◽  
Terrence R. Nathan

Abstract A mechanistic chemistry–dynamical model is used to evaluate the relative importance of radiative, photochemical, and dynamical feedbacks in communicating changes in lower-stratospheric ozone to the circulation of the stratosphere and lower mesosphere. Consistent with observations and past modeling studies of Northern Hemisphere late winter and early spring, high-latitude radiative cooling due to lower-stratospheric ozone depletion causes an increase in the modeled meridional temperature gradient, an increase in the strength of the polar vortex, and a decrease in vertical wave propagation in the lower stratosphere. Moreover, it is shown that, as planetary waves pass through the ozone loss region, dynamical feedbacks precondition the wave, causing a large increase in wave amplitude. The wave amplification causes an increase in planetary wave drag, an increase in residual circulation downwelling, and a weaker polar vortex in the upper stratosphere and lower mesosphere. The dynamical feedbacks responsible for the wave amplification are diagnosed using an ozone-modified refractive index; the results explain recent chemistry–coupled climate model simulations that suggest a link between ozone depletion and increased polar downwelling. The effects of future ozone recovery are also examined and the results provide guidance for researchers attempting to diagnose and predict how stratospheric climate will respond specifically to ozone loss and recovery versus other climate forcings including increasing greenhouse gas abundances and changing sea surface temperatures.


2016 ◽  
Vol 144 (4) ◽  
pp. 1321-1339 ◽  
Author(s):  
Hannah E. Attard ◽  
Rosimar Rios-Berrios ◽  
Corey T. Guastini ◽  
Andrea L. Lang

Abstract This paper investigates the tropospheric and stratospheric precursors to a major sudden stratospheric warming (SSW) that began on 6 January 2013. Using the Climate Forecast System Reanalysis dataset, the analysis identified two distinct decelerations of the 10-hPa zonal mean zonal wind at 65°N in December in addition to the major SSW, which occurred on 6 January 2013 when the 10-hPa zonal mean zonal wind at 65°N reversed from westerly to easterly. The analysis shows that the two precursor events preconditioned the stratosphere for the SSW. Analysis of the tropospheric state in the days leading to the precursor events and the major SSW suggests that high-latitude tropospheric blocks occurred in the days prior to the two December deceleration events, but not in the days prior to the SSW. A detailed wave activity flux (WAF) analysis suggests that the tropospheric blocking prior to the two December deceleration events contributed to an anomalously positive 40-day-average 100-hPa zonal mean meridional eddy heat flux prior to the SSW. Analysis of the stratospheric structure in the days prior to the SSW reveals that the SSW was associated with enhanced WAF in the upper stratosphere, planetary wave breaking, and an upper-stratospheric/lower-mesospheric disturbance. These results suggest that preconditioning of the stratosphere occurred as a result of WAF initiated by tropospheric blocking associated with the two December deceleration events. The two December deceleration events occurred in the 40 days prior to the SSW and led to the amplification of wave activity in the upper stratosphere and wave resonance that caused the January 2013 SSW.


2019 ◽  
Author(s):  
Nadja Samtleben ◽  
Christoph Jacobi ◽  
Petr Pišoft ◽  
Petr Šácha ◽  
Aleš Kuchař

Abstract. In order to investigate the impact of a locally confined gravity wave (GW) hotspot, a sensitivity study based on simulations of the middle atmosphere circulation during northern winter was performed with a nonlinear, mechanistic, global circulation model. To this end, for the hotspot region we selected a fixed longitude range in the East Asian region (120° E–170° E) and a latitude range from 22.5° N–52.5° N between 18 km and 30 km, which was then shifted northward in steps of 5°. For the southernmost hotspots, we observe a decreased stationary planetary wave (SPW) 1 activity in the upper stratosphere/lower mesosphere, i.e. less SPWs 1 are propagating upwards. These GW hotspots are leading to a negative refractive index inhibiting SPW propagation at midlatitudes. The decreased SPW 1 activity is connected with an increased zonal mean zonal wind at lower latitudes. This in turn decreases the meridional potential vorticity gradient (qy) from midlatitudes towards the polar region. A reversed qy indicates local baroclinic instability which generates SPWs 1 in the polar region, where we observe a strong positive Eliassen-Palm (EP) divergence. Thus, the EP flux is increasing towards the polar stratosphere (corresponding to enhanced SPW 1 amplitudes) where the SPWs 1 are breaking and the zonal mean zonal wind is decreasing. Thus, the local GW forcing is leading to a displacement of the polar vortex towards lower latitudes. The effect of the local baroclinic instability indicated by the reversed qy also produces SPWs 1 in the lower mesosphere. The effect on the dynamics in the middle atmosphere by GW hotspots which are located northward of 50° N is negligible because the refractive index of the atmosphere is strongly negative in the polar region. Thus, any changes in the SPW activity due to the local GW forcing are quite ineffective.


2021 ◽  
Author(s):  
Timo Asikainen ◽  
Antti Salminen ◽  
Ville Maliniemi ◽  
Kalevi Mursula

<p>The northern polar vortex experiences considerable inter-annual variability, which is also reflected to tropospheric weather. Recent research has established a link between polar vortex variations and energetic electron precipitation (EEP) from the near-Earth space into the polar atmosphere, which is mediated by EEP-induced chemical changes causing ozone loss in the mesosphere and stratosphere. However, the most dramatic changes in the polar vortex are due to strong enhancements of planetary wave activity, which typically result in a sudden stratospheric warming (SSW), a momentary breakdown of the polar vortex. Here we use the SSWs as an indicator of high planetary wave activity and consider their influence of SSWs on the atmospheric response to EEP in 1957-2017 using combined ERA-40 and ERA-Interim re-analysis data and geomagnetic activity as a proxy of EEP. We find that the EEP-related enhancement of the polar vortex and other associated dynamical responses are seen only during winters when a SSW occurs, and that the EEP-related changes take place slightly before the SSW onset. We show that the atmospheric conditions preceding SSWs favor enhanced wave-mean-flow interaction, which can dynamically amplify the initial polar vortex enhancement caused by ozone loss. These results highlight the importance of considering SSWs and sufficient level of planetary wave activity as a necessary condition for observing the effects of EEP on the polar vortex dynamics.</p>


2014 ◽  
Vol 28 (1) ◽  
pp. 86-107 ◽  
Author(s):  
Yun-Young Lee ◽  
Robert X. Black

Abstract The structure and dynamics of stratospheric northern annular mode (SNAM) events in CMIP5 simulations are studied, emphasizing (i) stratosphere–troposphere coupling and (ii) disparities between high-top (HT) and low-top (LT) models. Compared to HT models, LT models generally underrepresent SNAM amplitude in stratosphere, consistent with weaker polar vortex variability, as demonstrated by Charlton-Perez et al. Interestingly, however, this difference does not carry over to the associated zonal-mean SNAM signature in troposphere, which closely resembles observations in both HT and LT models. Nonetheless, a regional analysis illustrates that both HT and LT models exhibit anomalously weak and eastward shifted (compared to observations) storm track and sea level pressure anomaly patterns in association with SNAM events. Dynamical analyses of stratosphere–troposphere coupling are performed to further examine the distinction between HT and LT models. Variability in stratospheric planetary wave activity is reduced in LT models despite robust concomitant tropospheric variability. A meridional heat flux analysis indicates relatively weak vertical Rossby wave coupling in LT models consistent with the excessive damping events discussed by Shaw et al. Eliassen–Palm flux cross sections reveal that Rossby wave propagation is anomalously weak above the tropopause in LT models, suggesting that weak polar vortex variability in LT models is due, at least in part, to the inability of tropospheric planetary wave activity to enter the stratosphere. Although the results are consistent with anomalously weak vertical dynamical coupling in LT models during SNAM events, there is little impact upon attendant tropospheric variability. The physical reason behind this apparent paradox represents an important topic for future study.


Sign in / Sign up

Export Citation Format

Share Document