Experimental investigation on coherent structures at early stage of boundary layer bypass transition induced by wake impingement

2012 ◽  
Vol 55 (11) ◽  
pp. 2981-2989 ◽  
Author(s):  
Jun Wu ◽  
Chong Pan ◽  
Tian Li
Author(s):  
E. J. Walsh ◽  
F. Brighenti ◽  
D. M. McEligot

The evolution of the laminar boundary layer over a flat plate under a free stream turbulence intensity of 1.3% is analysed. The effect of free stream turbulence on the onset of transition is one of the important sources leading to bypass transition. Such disturbances are of great interest in engineering for the prediction of transition on turbine blades. The study concentrates on the early part of the boundary layer, starting from the leading edge, and is characterised by the presence of streamwise elongated regions of high and low streamwise velocity. It is demonstrated that the so called “Klebanoff modes” are not entirely representative of the flow structures, due to the time-averaged representations used in most studies. For the conditions of this investigation it is found that the urms and the peak disturbances remain constant in the early stages of the transition development. This region, in which the streaks strength is constant, is problematic for many theories as it is not known where on a surface to initiate a growth theory calculation, and hence the prediction of transition onset is difficult. The observation that a constant urms region exists within the boundary layer under these conditions may be the source of great difficulty in predicting transition onset under turbulence levels around 1%. This region suggests that the streaks are either continuously generated and damped, or do not grow during the early stage of transition, and highlights the importance of continuous influence of the free stream turbulence along the boundary layer edge. This work concludes that the first is more likely, and furthermore the measurements are shown to agree with recent direct numerical simulations.


1997 ◽  
Vol 119 (4) ◽  
pp. 794-801 ◽  
Author(s):  
J. Luo ◽  
B. Lakshminarayana

The boundary layer development and convective heat transfer on transonic turbine nozzle vanes are investigated using a compressible Navier–Stokes code with three low-Reynolds-number k–ε models. The mean-flow and turbulence transport equations are integrated by a four-stage Runge–Kutta scheme. Numerical predictions are compared with the experimental data acquired at Allison Engine Company. An assessment of the performance of various turbulence models is carried out. The two modes of transition, bypass transition and separation-induced transition, are studied comparatively. Effects of blade surface pressure gradients, free-stream turbulence level, and Reynolds number on the blade boundary layer development, particularly transition onset, are examined. Predictions from a parabolic boundary layer code are included for comparison with those from the elliptic Navier–Stokes code. The present study indicates that the turbine external heat transfer, under real engine conditions, can be predicted well by the Navier–Stokes procedure with the low-Reynolds-number k–ε models employed.


Author(s):  
Heinz-Adolf Schreiber ◽  
Wolfgang Steinert ◽  
Bernhard Küsters

An experimental and analytical study has been performed on the effect of Reynolds number and free-stream turbulence on boundary layer transition location on the suction surface of a controlled diffusion airfoil (CDA). The experiments were conducted in a rectilinear cascade facility at Reynolds numbers between 0.7 and 3.0×106 and turbulence intensities from about 0.7 to 4%. An oil streak technique and liquid crystal coatings were used to visualize the boundary layer state. For small turbulence levels and all Reynolds numbers tested the accelerated front portion of the blade is laminar and transition occurs within a laminar separation bubble shortly after the maximum velocity near 35–40% of chord. For high turbulence levels (Tu > 3%) and high Reynolds numbers transition propagates upstream into the accelerated front portion of the CDA blade. For those conditions, the sensitivity to surface roughness increases considerably and at Tu = 4% bypass transition is observed near 7–10% of chord. Experimental results are compared to theoretical predictions using the transition model which is implemented in the MISES code of Youngren and Drela. Overall the results indicate that early bypass transition at high turbulence levels must alter the profile velocity distribution for compressor blades that are designed and optimized for high Reynolds numbers.


1997 ◽  
Vol 119 (3) ◽  
pp. 405-411 ◽  
Author(s):  
R. E. Mayle ◽  
A. Schulz

A theory is presented for calculating the fluctuations in a laminar boundary layer when the free stream is turbulent. The kinetic energy equation for these fluctuations is derived and a new mechanism is revealed for their production. A methodology is presented for solving the equation using standard boundary layer computer codes. Solutions of the equation show that the fluctuations grow at first almost linearly with distance and then more slowly as viscous dissipation becomes important. Comparisons of calculated growth rates and kinetic energy profiles with data show good agreement. In addition, a hypothesis is advanced for the effective forcing frequency and free-stream turbulence level that produce these fluctuations. Finally, a method to calculate the onset of transition is examined and the results compared to data.


Sign in / Sign up

Export Citation Format

Share Document